These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


543 related items for PubMed ID: 32729851

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Hydrogenation using iron oxide-based nanocatalysts for the synthesis of amines.
    Jagadeesh RV, Stemmler T, Surkus AE, Junge H, Junge K, Beller M.
    Nat Protoc; 2015 Apr; 10(4):548-57. PubMed ID: 25741990
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Recent Catalytic Advances on the Sustainable Production of Primary Furanic Amines from the One-Pot Reductive Amination of 5-Hydroxymethylfurfural.
    Truong CC, Mishra DK, Suh YW.
    ChemSusChem; 2023 Jan 09; 16(1):e202201846. PubMed ID: 36354122
    [Abstract] [Full Text] [Related]

  • 26. Recent Advances in Catalytic Systems for the Reduction of Aromatic and Aliphatic Nitrile Compounds to Amines.
    Ansari S, Shariati S.
    Comb Chem High Throughput Screen; 2024 Apr 04. PubMed ID: 38584566
    [Abstract] [Full Text] [Related]

  • 27. Metal-based Heterogeneous Catalysts for One-Pot Synthesis of Secondary Anilines from Nitroarenes and Aldehydes.
    Romanazzi G, Petrelli V, Fiore AM, Mastrorilli P, Dell'Anna MM.
    Molecules; 2021 Feb 20; 26(4):. PubMed ID: 33672487
    [Abstract] [Full Text] [Related]

  • 28. General Dialdehyde Click Chemistry for Amine Bioconjugation.
    Elahipanah S, O'Brien PJ, Rogozhnikov D, Yousaf MN.
    Bioconjug Chem; 2017 May 17; 28(5):1422-1433. PubMed ID: 28436674
    [Abstract] [Full Text] [Related]

  • 29. Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis.
    Beatty JW, Stephenson CR.
    Acc Chem Res; 2015 May 19; 48(5):1474-84. PubMed ID: 25951291
    [Abstract] [Full Text] [Related]

  • 30. The Synthesis of Primary Amines through Reductive Amination Employing an Iron Catalyst.
    Bäumler C, Bauer C, Kempe R.
    ChemSusChem; 2020 Jun 19; 13(12):3110-3114. PubMed ID: 32314866
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. The azomethine ylide route to amine C-H functionalization: redox-versions of classic reactions and a pathway to new transformations.
    Seidel D.
    Acc Chem Res; 2015 Feb 17; 48(2):317-28. PubMed ID: 25560649
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Development of a general non-noble metal catalyst for the benign amination of alcohols with amines and ammonia.
    Cui X, Dai X, Deng Y, Shi F.
    Chemistry; 2013 Mar 11; 19(11):3665-75. PubMed ID: 23417959
    [Abstract] [Full Text] [Related]

  • 40. Iridium-Catalyzed Direct Reductive Amination of Ketones and Secondary Amines: Breaking the Aliphatic Wall.
    Jouffroy M, Nguyen TM, Cordier M, Blot M, Roisnel T, Gramage-Doria R.
    Chemistry; 2022 Jun 27; 28(36):e202201078. PubMed ID: 35474525
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 28.