These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
157 related items for PubMed ID: 32739347
1. Sensitive and reversible perylene derivative-based fluorescent probe for acetylcholinesterase activity monitoring and its inhibitor. Chen Y, Liu W, Zhang B, Suo Z, Xing F, Feng L. Anal Biochem; 2020 Oct 15; 607():113835. PubMed ID: 32739347 [Abstract] [Full Text] [Related]
3. Aspartic acid functionalized water-soluble perylene diimide as "Off-On" fluorescent sensor for selective detection Cu(2+) and ATP. Zhong L, Xing F, Bai Y, Zhao Y, Zhu S. Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov 15; 115():370-5. PubMed ID: 23856042 [Abstract] [Full Text] [Related]
4. A new fluorescent probe for sensing of biothiols and screening of acetylcholinesterase inhibitors. Wu S, Li Y, Deng T, Wang X, Hu S, Peng G, Huang XA, Ling Y, Liu F. Org Biomol Chem; 2020 Apr 01; 18(13):2468-2474. PubMed ID: 32167516 [Abstract] [Full Text] [Related]
6. Resurfaced fluorescent protein as a sensing platform for label-free detection of copper(II) ion and acetylcholinesterase activity. Lei C, Wang Z, Nie Z, Deng H, Hu H, Huang Y, Yao S. Anal Chem; 2015 Feb 03; 87(3):1974-80. PubMed ID: 25560517 [Abstract] [Full Text] [Related]
7. Affinity binding-guided fluorescent nanobiosensor for acetylcholinesterase inhibitors via distance modulation between the fluorophore and metallic nanoparticle. Zhang Y, Hei T, Cai Y, Gao Q, Zhang Q. Anal Chem; 2012 Mar 20; 84(6):2830-6. PubMed ID: 22339669 [Abstract] [Full Text] [Related]
9. Metal coordination polymer induced perylene probe excimer fluorescence and its application in acetylcholinesterase sensing and alpha-fetoprotein immunoassay. Li Y, Yin S, Hou J, Meng L, Gao M, Sun Y, Zhang C, Bai S, Ren J, Yu C. Analyst; 2019 Mar 21; 144(6):2034-2041. PubMed ID: 30702092 [Abstract] [Full Text] [Related]
12. A fluorometric assay for acetylcholinesterase activity and inhibitor detection based on DNA-templated copper/silver nanoclusters. Li W, Li W, Hu Y, Xia Y, Shen Q, Nie Z, Huang Y, Yao S. Biosens Bioelectron; 2013 Sep 15; 47():345-9. PubMed ID: 23603132 [Abstract] [Full Text] [Related]
14. Synthesis and biological evaluation of novel tacrine derivatives and tacrine-coumarin hybrids as cholinesterase inhibitors. Hamulakova S, Janovec L, Hrabinova M, Spilovska K, Korabecny J, Kristian P, Kuca K, Imrich J. J Med Chem; 2014 Aug 28; 57(16):7073-84. PubMed ID: 25089370 [Abstract] [Full Text] [Related]
15. Three Dimensional Quantitative Structure Activity Relationship and Pharmacophore Modeling of Tacrine Derivatives as Acetylcholinesterase Inhibitors in Alzheimer's Treatment. Ansari F, Ghasemi JB, Niazi A. Med Chem; 2020 Aug 28; 16(2):155-168. PubMed ID: 31092184 [Abstract] [Full Text] [Related]
17. Thiocholine mediated stabilization of in situ produced CdS quantum dots: application for the detection of acetylcholinesterase activity and inhibitors. Garai-Ibabe G, Saa L, Pavlov V. Analyst; 2014 Jan 07; 139(1):280-4. PubMed ID: 24225492 [Abstract] [Full Text] [Related]
18. Molecular-docking-guided design and synthesis of new IAA-tacrine hybrids as multifunctional AChE/BChE inhibitors. Cheng ZQ, Zhu KK, Zhang J, Song JL, Muehlmann LA, Jiang CS, Liu CL, Zhang H. Bioorg Chem; 2019 Mar 07; 83():277-288. PubMed ID: 30391700 [Abstract] [Full Text] [Related]
20. A Probe for Fluorescence Detection of the Acetylcholinesterase Activity Based on Molecularly Imprinted Polymers Coated Carbon Dots. Jia Z, Luo Y, Wen H, Huang S, Du X, Xue W. Chem Pharm Bull (Tokyo); 2019 Aug 01; 67(8):795-800. PubMed ID: 31061298 [Abstract] [Full Text] [Related] Page: [Next] [New Search]