These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
151 related items for PubMed ID: 32746357
21. A single-chip signal processing and telemetry engine for an implantable 96-channel neural data acquisition system. Rizk M, Obeid I, Callender SH, Wolf PD. J Neural Eng; 2007 Sep; 4(3):309-21. PubMed ID: 17873433 [Abstract] [Full Text] [Related]
22. Development of a Closed-Loop Stimulator for Laryngeal Reanimation, Part 1: Devices. Otten DM, Kobler JB, Hillman RE, Zeitels SM, Seitter KP, Heaton JT. Ann Otol Rhinol Laryngol; 2019 Mar; 128(3_suppl):33S-52S. PubMed ID: 30843432 [Abstract] [Full Text] [Related]
27. Adaptive quantization of local field potentials for wireless implants in freely moving animals: an open-source neural recording device. Martinez D, Clément M, Messaoudi B, Gervasoni D, Litaudon P, Buonviso N. J Neural Eng; 2018 Apr; 15(2):025001. PubMed ID: 29219118 [Abstract] [Full Text] [Related]
28. A Single-Chip Full-Duplex High Speed Transceiver for Multi-Site Stimulating and Recording Neural Implants. Mirbozorgi SA, Bahrami H, Sawan M, Rusch LA, Gosselin B. IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):643-53. PubMed ID: 26469635 [Abstract] [Full Text] [Related]
29. Development of a Closed-Loop Stimulator for Laryngeal Reanimation: Part 2. Device Testing in the Canine Model of Laryngeal Paralysis. Heaton JT, Kobler JB, Otten DM, Hillman RE, Zeitels SM. Ann Otol Rhinol Laryngol; 2019 Mar; 128(3_suppl):53S-70S. PubMed ID: 30843434 [Abstract] [Full Text] [Related]
30. An 11 μW Sub-pJ/bit Reconfigurable Transceiver for mm-Sized Wireless Implants. Yakovlev A, Jang JH, Pivonka D. IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):175-85. PubMed ID: 25616075 [Abstract] [Full Text] [Related]
32. The use of a bone-anchored device as a hard-wired conduit for transmitting EMG signals from implanted muscle electrodes. Al-Ajam Y, Lancashire H, Pendegrass C, Kang N, Dowling RP, Taylor SJ, Blunn G. IEEE Trans Biomed Eng; 2013 Jun; 60(6):1654-9. PubMed ID: 23358938 [Abstract] [Full Text] [Related]
33. Implantable physiologic controller for left ventricular assist devices with telemetry capability. Asgari SS, Bonde P. J Thorac Cardiovasc Surg; 2014 Jan; 147(1):192-202. PubMed ID: 24176267 [Abstract] [Full Text] [Related]
35. A distributed, high-channel-count, implanted bidirectional system for restoration of somatosensation and myoelectric control. Lambrecht JM, Cady SR, Peterson EJ, Dunning JL, Dinsmoor DA, Pape F, Graczyk EL, Tyler DJ. J Neural Eng; 2024 Jun 21; 21(3):. PubMed ID: 38861967 [Abstract] [Full Text] [Related]
36. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability. Gagnon-Turcotte G, Kisomi AA, Ameli R, Camaro CO, LeChasseur Y, Néron JL, Bareil PB, Fortier P, Bories C, de Koninck Y, Gosselin B. Sensors (Basel); 2015 Sep 09; 15(9):22776-97. PubMed ID: 26371006 [Abstract] [Full Text] [Related]
37. First-in-human demonstration of floating EMG sensors and stimulators wirelessly powered and operated by volume conduction. Becerra-Fajardo L, Minguillon J, Krob MO, Rodrigues C, González-Sánchez M, Megía-García Á, Galán CR, Henares FG, Comerma A, Del-Ama AJ, Gil-Agudo A, Grandas F, Schneider-Ickert A, Barroso FO, Ivorra A. J Neuroeng Rehabil; 2024 Jan 03; 21(1):4. PubMed ID: 38172975 [Abstract] [Full Text] [Related]
38. WIMAGINE: wireless 64-channel ECoG recording implant for long term clinical applications. Mestais CS, Charvet G, Sauter-Starace F, Foerster M, Ratel D, Benabid AL. IEEE Trans Neural Syst Rehabil Eng; 2015 Jan 03; 23(1):10-21. PubMed ID: 25014960 [Abstract] [Full Text] [Related]