These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


949 related items for PubMed ID: 32750151

  • 1. Coupled network of the circadian clocks: a driving force of rhythmic physiology.
    Finger AM, Dibner C, Kramer A.
    FEBS Lett; 2020 Sep; 594(17):2734-2769. PubMed ID: 32750151
    [Abstract] [Full Text] [Related]

  • 2. Entrainment of circadian clocks in mammals by arousal and food.
    Mistlberger RE, Antle MC.
    Essays Biochem; 2011 Jun 30; 49(1):119-36. PubMed ID: 21819388
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Period-independent novel circadian oscillators revealed by timed exercise and palatable meals.
    Flôres DE, Bettilyon CN, Yamazaki S.
    Sci Rep; 2016 Feb 24; 6():21945. PubMed ID: 26904978
    [Abstract] [Full Text] [Related]

  • 5. Peripheral circadian oscillators in mammals.
    Brown SA, Azzi A.
    Handb Exp Pharmacol; 2013 Feb 24; (217):45-66. PubMed ID: 23604475
    [Abstract] [Full Text] [Related]

  • 6. Circadian timing of metabolism in animal models and humans.
    Dibner C, Schibler U.
    J Intern Med; 2015 May 24; 277(5):513-27. PubMed ID: 25599827
    [Abstract] [Full Text] [Related]

  • 7. Central and peripheral circadian clocks in mammals.
    Mohawk JA, Green CB, Takahashi JS.
    Annu Rev Neurosci; 2012 May 24; 35():445-62. PubMed ID: 22483041
    [Abstract] [Full Text] [Related]

  • 8. The mammalian circadian system: a hierarchical multi-oscillator structure for generating circadian rhythm.
    Honma S.
    J Physiol Sci; 2018 May 24; 68(3):207-219. PubMed ID: 29460036
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Peripheral Circadian Oscillators.
    Brown AJ, Pendergast JS, Yamazaki S.
    Yale J Biol Med; 2019 Jun 24; 92(2):327-335. PubMed ID: 31249493
    [Abstract] [Full Text] [Related]

  • 11. [Circadian clocks and energy metabolism in rodents].
    Challet E.
    Biol Aujourdhui; 2014 Jun 24; 208(4):269-74. PubMed ID: 25840453
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Mammalian circadian systems: Organization and modern life challenges.
    Finger AM, Kramer A.
    Acta Physiol (Oxf); 2021 Mar 24; 231(3):e13548. PubMed ID: 32846050
    [Abstract] [Full Text] [Related]

  • 15. The functional changes of the circadian system organization in aging.
    Zhao J, Warman GR, Cheeseman JF.
    Ageing Res Rev; 2019 Jul 24; 52():64-71. PubMed ID: 31048031
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Peripheral circadian oscillators and their rhythmic regulation.
    Fukuhara C, Tosini G.
    Front Biosci; 2003 May 01; 8():d642-51. PubMed ID: 12700075
    [Abstract] [Full Text] [Related]

  • 18. Synchronization of the mammalian circadian timing system: Light can control peripheral clocks independently of the SCN clock: alternate routes of entrainment optimize the alignment of the body's circadian clock network with external time.
    Husse J, Eichele G, Oster H.
    Bioessays; 2015 Oct 01; 37(10):1119-28. PubMed ID: 26252253
    [Abstract] [Full Text] [Related]

  • 19. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock.
    Husse J, Leliavski A, Tsang AH, Oster H, Eichele G.
    FASEB J; 2014 Nov 01; 28(11):4950-60. PubMed ID: 25063847
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 48.