These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


571 related items for PubMed ID: 32755359

  • 21. Corticospinal excitability of the biceps brachii is shoulder position dependent.
    Collins BW, Cadigan EWJ, Stefanelli L, Button DC.
    J Neurophysiol; 2017 Dec 01; 118(6):3242-3251. PubMed ID: 28855295
    [Abstract] [Full Text] [Related]

  • 22. Unilateral elbow flexion fatigue modulates corticospinal responsiveness in non-fatigued contralateral biceps brachii.
    Aboodarda SJ, Šambaher N, Behm DG.
    Scand J Med Sci Sports; 2016 Nov 01; 26(11):1301-1312. PubMed ID: 26633736
    [Abstract] [Full Text] [Related]

  • 23. Corticospinal excitability to the biceps brachii and its relationship to postactivation potentiation of the elbow flexors.
    Collins BW, Gale LH, Buckle NCM, Button DC.
    Physiol Rep; 2017 Apr 01; 5(8):. PubMed ID: 28455452
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Intensity-dependent alterations in the excitability of cortical and spinal projections to the knee extensors during isometric and locomotor exercise.
    Weavil JC, Sidhu SK, Mangum TS, Richardson RS, Amann M.
    Am J Physiol Regul Integr Comp Physiol; 2015 Jun 15; 308(12):R998-1007. PubMed ID: 25876651
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Corticospinal excitability of the biceps brachii is higher during arm cycling than an intensity-matched tonic contraction.
    Forman D, Raj A, Button DC, Power KE.
    J Neurophysiol; 2014 Sep 01; 112(5):1142-51. PubMed ID: 24899677
    [Abstract] [Full Text] [Related]

  • 29. Distinct Corticospinal and Reticulospinal Contributions to Voluntary Control of Elbow Flexor and Extensor Muscles in Humans with Tetraplegia.
    Sangari S, Perez MA.
    J Neurosci; 2020 Nov 11; 40(46):8831-8841. PubMed ID: 32883710
    [Abstract] [Full Text] [Related]

  • 30. Output of human motoneuron pools to corticospinal inputs during voluntary contractions.
    Martin PG, Gandevia SC, Taylor JL.
    J Neurophysiol; 2006 Jun 11; 95(6):3512-8. PubMed ID: 16481454
    [Abstract] [Full Text] [Related]

  • 31. Supraspinal, spinal, and motor unit adjustments to fatiguing isometric contractions of the knee extensors at low and high submaximal intensities in males.
    Angius L, Del Vecchio A, Goodall S, Thomas K, Ansdell P, Atkinson E, Farina D, Howatson G.
    J Appl Physiol (1985); 2024 Jun 01; 136(6):1546-1558. PubMed ID: 38695356
    [Abstract] [Full Text] [Related]

  • 32. Do aerobic characteristics explain isometric exercise-induced neuromuscular fatigue and recovery in upper and lower limbs?
    Vernillo G, Temesi J, Martin M, Millet GY.
    J Sports Sci; 2019 Feb 01; 37(4):387-395. PubMed ID: 30074432
    [Abstract] [Full Text] [Related]

  • 33. The Sexes Do Not Differ for Neural Responses to Submaximal Elbow Extensor Fatigue.
    Yacyshyn AF, McNeil CJ.
    Med Sci Sports Exerc; 2020 Sep 01; 52(9):1992-2001. PubMed ID: 32195769
    [Abstract] [Full Text] [Related]

  • 34. Cadence-dependent changes in corticospinal excitability of the biceps brachii during arm cycling.
    Forman DA, Philpott DT, Button DC, Power KE.
    J Neurophysiol; 2015 Oct 01; 114(4):2285-94. PubMed ID: 26289462
    [Abstract] [Full Text] [Related]

  • 35. Age differences in dynamic fatigability and variability of arm and leg muscles: Associations with physical function.
    Senefeld J, Yoon T, Hunter SK.
    Exp Gerontol; 2017 Jan 01; 87(Pt A):74-83. PubMed ID: 27989926
    [Abstract] [Full Text] [Related]

  • 36. Comparison of neuromuscular adjustments associated with sustained isometric contractions of four different muscle groups.
    Neyroud D, Rüttimann J, Mannion AF, Millet GY, Maffiuletti NA, Kayser B, Place N.
    J Appl Physiol (1985); 2013 May 15; 114(10):1426-34. PubMed ID: 23471948
    [Abstract] [Full Text] [Related]

  • 37. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue.
    Gruet M, Temesi J, Rupp T, Levy P, Millet GY, Verges S.
    Neuroscience; 2013 Feb 12; 231():384-99. PubMed ID: 23131709
    [Abstract] [Full Text] [Related]

  • 38. Motoneuron responsiveness to corticospinal tract stimulation during the silent period induced by transcranial magnetic stimulation.
    Yacyshyn AF, Woo EJ, Price MC, McNeil CJ.
    Exp Brain Res; 2016 Dec 12; 234(12):3457-3463. PubMed ID: 27481287
    [Abstract] [Full Text] [Related]

  • 39. Disparate kinetics of change in responses to electrical stimulation at the thoracic and lumbar level during fatiguing isometric knee extension.
    Brownstein CG, Souron R, Royer N, Singh B, Lapole T, Millet GY.
    J Appl Physiol (1985); 2020 Jan 01; 128(1):159-167. PubMed ID: 31751184
    [Abstract] [Full Text] [Related]

  • 40. The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue.
    McNeil CJ, Martin PG, Gandevia SC, Taylor JL.
    J Physiol; 2009 Dec 01; 587(Pt 23):5601-12. PubMed ID: 19805743
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 29.