These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The evolutionary appearance of non-cyanogenic hydroxynitrile glucosides in the Lotus genus is accompanied by the substrate specialization of paralogous β-glucosidases resulting from a crucial amino acid substitution. Lai D, Abou Hachem M, Robson F, Olsen CE, Wang TL, Møller BL, Takos AM, Rook F. Plant J; 2014 Jul; 79(2):299-311. PubMed ID: 24861854 [Abstract] [Full Text] [Related]
6. Biosynthesis of rhodiocyanosides in Lotus japonicus: rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile. Saito S, Motawia MS, Olsen CE, Møller BL, Bak S. Phytochemistry; 2012 May; 77():260-7. PubMed ID: 22385904 [Abstract] [Full Text] [Related]
7. Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes. Andersen MD, Busk PK, Svendsen I, Møller BL. J Biol Chem; 2000 Jan 21; 275(3):1966-75. PubMed ID: 10636899 [Abstract] [Full Text] [Related]
14. The biosynthesis of cyanogenic glucosides in seedlings of cassava (Manihot esculenta Crantz). Koch B, Nielsen VS, Halkier BA, Olsen CE, Møller BL. Arch Biochem Biophys; 1992 Jan 21; 292(1):141-50. PubMed ID: 1727632 [Abstract] [Full Text] [Related]
15. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava. Kannangara R, Motawia MS, Hansen NK, Paquette SM, Olsen CE, Møller BL, Jørgensen K. Plant J; 2011 Oct 21; 68(2):287-301. PubMed ID: 21736650 [Abstract] [Full Text] [Related]