These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Explainable machine learning methods and respiratory oscillometry for the diagnosis of respiratory abnormalities in sarcoidosis. de Lima AD, Lopes AJ, do Amaral JLM, de Melo PL. BMC Med Inform Decis Mak; 2022 Oct 20; 22(1):274. PubMed ID: 36266674 [Abstract] [Full Text] [Related]
8. Machine learning algorithms and forced oscillation measurements to categorise the airway obstruction severity in chronic obstructive pulmonary disease. Amaral JL, Lopes AJ, Faria AC, Melo PL. Comput Methods Programs Biomed; 2015 Feb 24; 118(2):186-97. PubMed ID: 25435077 [Abstract] [Full Text] [Related]
9. Respiratory Sound Based Classification of Chronic Obstructive Pulmonary Disease: a Risk Stratification Approach in Machine Learning Paradigm. Haider NS, Singh BK, Periyasamy R, Behera AK. J Med Syst; 2019 Jun 28; 43(8):255. PubMed ID: 31254141 [Abstract] [Full Text] [Related]
10. Fuzzy support vector machine: an efficient rule-based classification technique for microarrays. Hajiloo M, Rabiee HR, Anooshahpour M. BMC Bioinformatics; 2013 Jun 28; 14 Suppl 13(Suppl 13):S4. PubMed ID: 24266942 [Abstract] [Full Text] [Related]
11. Bronchodilator Response Assessed by the Forced Oscillation Technique Identifies Poor Asthma Control With Greater Sensitivity Than Spirometry. Cottee AM, Seccombe LM, Thamrin C, King GG, Peters MJ, Farah CS. Chest; 2020 Jun 28; 157(6):1435-1441. PubMed ID: 31982392 [Abstract] [Full Text] [Related]
12. Evaluation of airway responsiveness using colored three-dimensional analyses of a new forced oscillation technique in controlled asthmatic and nonasthmatic children. Murakami K, Habukawa C, Kurosawa H, Takemura T. Respir Investig; 2014 Jan 28; 52(1):57-64. PubMed ID: 24388372 [Abstract] [Full Text] [Related]
14. Automatic identification of Chronic Obstructive Pulmonary Disease Based on forced oscillation measurements and artificial neural networks. Amaral JL, Faria AC, Lopes AJ, Jansen JM, Melo PL. Annu Int Conf IEEE Eng Med Biol Soc; 2010 Jan 28; 2010():1394-7. PubMed ID: 21096340 [Abstract] [Full Text] [Related]
15. Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan™ systems. Acharya UR, Vinitha Sree S, Krishnan MM, Molinari F, Garberoglio R, Suri JS. Ultrasonics; 2012 Apr 28; 52(4):508-20. PubMed ID: 22154208 [Abstract] [Full Text] [Related]
16. Overall and peripheral lung function assessment by spirometry and forced oscillation technique in relation to asthma diagnosis and control. Heijkenskjöld Rentzhog C, Janson C, Berglund L, Borres MP, Nordvall L, Alving K, Malinovschi A. Clin Exp Allergy; 2017 Dec 28; 47(12):1546-1554. PubMed ID: 28940832 [Abstract] [Full Text] [Related]
17. Automatic feed phase identification in multivariate bioprocess profiles by sequential binary classification. Nikzad-Langerodi R, Lughofer E, Saminger-Platz S, Zahel T, Sagmeister P, Herwig C. Anal Chim Acta; 2017 Aug 22; 982():48-61. PubMed ID: 28734365 [Abstract] [Full Text] [Related]
18. A comparative study of the SVM and K-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals. Palaniappan R, Sundaraj K, Sundaraj S. BMC Bioinformatics; 2014 Jun 27; 15():223. PubMed ID: 24970564 [Abstract] [Full Text] [Related]