These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


184 related items for PubMed ID: 32776587

  • 1. Characterisation of centriole biogenesis during multiciliation in planarians.
    Li Y, Guo F, Jing Q, Zhu X, Yan X.
    Biol Cell; 2020 Dec; 112(12):398-408. PubMed ID: 32776587
    [Abstract] [Full Text] [Related]

  • 2. Deuterosome-mediated centriole biogenesis.
    Klos Dehring DA, Vladar EK, Werner ME, Mitchell JW, Hwang P, Mitchell BJ.
    Dev Cell; 2013 Oct 14; 27(1):103-12. PubMed ID: 24075808
    [Abstract] [Full Text] [Related]

  • 3. PLK4 drives centriole amplification and apical surface area expansion in multiciliated cells.
    LoMastro GM, Drown CG, Maryniak AL, Jewett CE, Strong MA, Holland AJ.
    Elife; 2022 Aug 15; 11():. PubMed ID: 35969030
    [Abstract] [Full Text] [Related]

  • 4. Dynamics of centriole amplification in centrosome-depleted brain multiciliated progenitors.
    Mercey O, Al Jord A, Rostaing P, Mahuzier A, Fortoul A, Boudjema AR, Faucourt M, Spassky N, Meunier A.
    Sci Rep; 2019 Sep 10; 9(1):13060. PubMed ID: 31506528
    [Abstract] [Full Text] [Related]

  • 5. Regulation of cilia abundance in multiciliated cells.
    Nanjundappa R, Kong D, Shim K, Stearns T, Brody SL, Loncarek J, Mahjoub MR.
    Elife; 2019 Apr 26; 8():. PubMed ID: 31025935
    [Abstract] [Full Text] [Related]

  • 6. The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis.
    Zhao H, Zhu L, Zhu Y, Cao J, Li S, Huang Q, Xu T, Huang X, Yan X, Zhu X.
    Nat Cell Biol; 2013 Dec 26; 15(12):1434-44. PubMed ID: 24240477
    [Abstract] [Full Text] [Related]

  • 7. A role for Cep70 in centriole amplification in multiciliated cells.
    Kim SK, Brotslaw E, Thome V, Mitchell J, Ventrella R, Collins C, Mitchell B.
    Dev Biol; 2021 Mar 26; 471():10-17. PubMed ID: 33285087
    [Abstract] [Full Text] [Related]

  • 8. Cep152 interacts with Plk4 and is required for centriole duplication.
    Hatch EM, Kulukian A, Holland AJ, Cleveland DW, Stearns T.
    J Cell Biol; 2010 Nov 15; 191(4):721-9. PubMed ID: 21059850
    [Abstract] [Full Text] [Related]

  • 9. Parental centrioles are dispensable for deuterosome formation and function during basal body amplification.
    Zhao H, Chen Q, Fang C, Huang Q, Zhou J, Yan X, Zhu X.
    EMBO Rep; 2019 Apr 15; 20(4):. PubMed ID: 30833343
    [Abstract] [Full Text] [Related]

  • 10. The 3D architecture and molecular foundations of de novo centriole assembly via bicentrioles.
    Gomes Pereira S, Sousa AL, Nabais C, Paixão T, Holmes AJ, Schorb M, Goshima G, Tranfield EM, Becker JD, Bettencourt-Dias M.
    Curr Biol; 2021 Oct 11; 31(19):4340-4353.e7. PubMed ID: 34433076
    [Abstract] [Full Text] [Related]

  • 11. Centriole assembly in CHO cells expressing Plk4/SAS6/SAS4 is similar to centriogenesis in ciliated epithelial cells.
    Kuriyama R.
    Cell Motil Cytoskeleton; 2009 Aug 11; 66(8):588-96. PubMed ID: 19402176
    [Abstract] [Full Text] [Related]

  • 12. De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly.
    Wang WJ, Acehan D, Kao CH, Jane WN, Uryu K, Tsou MF.
    Elife; 2015 Nov 26; 4():. PubMed ID: 26609813
    [Abstract] [Full Text] [Related]

  • 13. STIL is required for centriole duplication in human cells.
    Vulprecht J, David A, Tibelius A, Castiel A, Konotop G, Liu F, Bestvater F, Raab MS, Zentgraf H, Izraeli S, Krämer A.
    J Cell Sci; 2012 Mar 01; 125(Pt 5):1353-62. PubMed ID: 22349705
    [Abstract] [Full Text] [Related]

  • 14. An Autonomous Oscillation Times and Executes Centriole Biogenesis.
    Aydogan MG, Steinacker TL, Mofatteh M, Wilmott ZM, Zhou FY, Gartenmann L, Wainman A, Saurya S, Novak ZA, Wong SS, Goriely A, Boemo MA, Raff JW.
    Cell; 2020 Jun 25; 181(7):1566-1581.e27. PubMed ID: 32531200
    [Abstract] [Full Text] [Related]

  • 15. Mechanism and Regulation of Centriole and Cilium Biogenesis.
    Breslow DK, Holland AJ.
    Annu Rev Biochem; 2019 Jun 20; 88():691-724. PubMed ID: 30601682
    [Abstract] [Full Text] [Related]

  • 16. Plk4 triggers autonomous de novo centriole biogenesis and maturation.
    Nabais C, Pessoa D, de-Carvalho J, van Zanten T, Duarte P, Mayor S, Carneiro J, Telley IA, Bettencourt-Dias M.
    J Cell Biol; 2021 May 03; 220(5):. PubMed ID: 33760919
    [Abstract] [Full Text] [Related]

  • 17. Controlling centriole numbers: Geminin family members as master regulators of centriole amplification and multiciliogenesis.
    Arbi M, Pefani DE, Taraviras S, Lygerou Z.
    Chromosoma; 2018 Jun 03; 127(2):151-174. PubMed ID: 29243212
    [Abstract] [Full Text] [Related]

  • 18. Centriole biogenesis and function in multiciliated cells.
    Zhang S, Mitchell BJ.
    Methods Cell Biol; 2015 Jun 03; 129():103-127. PubMed ID: 26175436
    [Abstract] [Full Text] [Related]

  • 19. Cep57 and Cep57l1 function redundantly to recruit the Cep63-Cep152 complex for centriole biogenesis.
    Zhao H, Yang S, Chen Q, Duan X, Li G, Huang Q, Zhu X, Yan X.
    J Cell Sci; 2020 Jul 03; 133(13):. PubMed ID: 32503940
    [Abstract] [Full Text] [Related]

  • 20. Experimental and Natural Induction of de novo Centriole Formation.
    Takumi K, Kitagawa D.
    Front Cell Dev Biol; 2022 Jul 03; 10():861864. PubMed ID: 35445021
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.