These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 32786068

  • 21. Six weeks of high-intensity interval training to exhaustion attenuates dynamic cerebral autoregulation without influencing resting cerebral blood velocity in young fit men.
    Drapeau A, Labrecque L, Imhoff S, Paquette M, Le Blanc O, Malenfant S, Brassard P.
    Physiol Rep; 2019 Aug; 7(15):e14185. PubMed ID: 31373166
    [Abstract] [Full Text] [Related]

  • 22. The effects of habitual resistance exercise training on cerebrovascular responses to lower body dynamic resistance exercise: A cross-sectional study.
    Korad S, Mündel T, Perry BG.
    Exp Physiol; 2024 Sep; 109(9):1478-1491. PubMed ID: 38888986
    [Abstract] [Full Text] [Related]

  • 23. Exercise modality effect on oxygen uptake off-transient kinetics at maximal oxygen uptake intensity.
    Sousa A, Rodríguez FA, Machado L, Vilas-Boas JP, Fernandes RJ.
    Exp Physiol; 2015 Jun; 100(6):719-29. PubMed ID: 25865136
    [Abstract] [Full Text] [Related]

  • 24. Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs.
    Billat VL, Slawinski J, Bocquet V, Demarle A, Lafitte L, Chassaing P, Koralsztein JP.
    Eur J Appl Physiol; 2000 Feb; 81(3):188-96. PubMed ID: 10638376
    [Abstract] [Full Text] [Related]

  • 25. Heterogeneity and incidence of non-response for changes in cardiorespiratory fitness following time-efficient sprint interval exercise training.
    Metcalfe RS, Vollaard NBJ.
    Appl Physiol Nutr Metab; 2021 Jul; 46(7):735-742. PubMed ID: 33417513
    [Abstract] [Full Text] [Related]

  • 26. Swimming-related effects on cerebrovascular and cognitive function.
    Shoemaker LN, Wilson LC, Lucas SJE, Machado L, Thomas KN, Cotter JD.
    Physiol Rep; 2019 Oct; 7(20):e14247. PubMed ID: 31637867
    [Abstract] [Full Text] [Related]

  • 27. Relationship of middle cerebral artery blood flow velocity to intensity during dynamic exercise in normal subjects.
    Moraine JJ, Lamotte M, Berré J, Niset G, Leduc A, Naeije R.
    Eur J Appl Physiol Occup Physiol; 1993 Oct; 67(1):35-8. PubMed ID: 8375362
    [Abstract] [Full Text] [Related]

  • 28. Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: effect of age and 12-week exercise training.
    Murrell CJ, Cotter JD, Thomas KN, Lucas SJ, Williams MJ, Ainslie PN.
    Age (Dordr); 2013 Jun; 35(3):905-20. PubMed ID: 22669592
    [Abstract] [Full Text] [Related]

  • 29. Cerebrovascular haemodynamics during isometric resistance exercise with and without the Valsalva manoeuvre.
    Perry BG, De Hamel T, Thomas KN, Wilson LC, Gibbons TD, Cotter JD.
    Eur J Appl Physiol; 2020 Feb; 120(2):467-479. PubMed ID: 31912226
    [Abstract] [Full Text] [Related]

  • 30. High-intensity Interval Training in Different Exercise Modes: Lessons from Time to Exhaustion.
    Sousa AC, Fernandes RJ, Boas JPV, Figueiredo P.
    Int J Sports Med; 2018 Sep; 39(9):668-673. PubMed ID: 29925107
    [Abstract] [Full Text] [Related]

  • 31. Hemodynamic response to upright resistance exercise: effect of load and repetition.
    Perry BG, Schlader ZJ, Barnes MJ, Cochrane DJ, Lucas SJ, Mündel T.
    Med Sci Sports Exerc; 2014 Mar; 46(3):479-87. PubMed ID: 23917471
    [Abstract] [Full Text] [Related]

  • 32. Contribution of central and peripheral adaptations to changes in maximal oxygen uptake following 4 weeks of sprint interval training.
    Raleigh JP, Giles MD, Islam H, Nelms M, Bentley RF, Jones JH, Neder JA, Boonstra K, Quadrilatero J, Simpson CA, Tschakovsky ME, Gurd BJ.
    Appl Physiol Nutr Metab; 2018 Oct; 43(10):1059-1068. PubMed ID: 29733694
    [Abstract] [Full Text] [Related]

  • 33. Cerebrovascular responses to graded exercise in young healthy males and females.
    Ashley JD, Shelley JH, Sun J, Song J, Trent JA, Ambrosio LD, Larson DJ, Larson RD, Yabluchanskiy A, Kellawan JM.
    Physiol Rep; 2020 Oct; 8(20):e14622. PubMed ID: 33112497
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Evidence for temperature-mediated regional increases in cerebral blood flow during exercise.
    Caldwell HG, Coombs GB, Howe CA, Hoiland RL, Patrician A, Lucas SJE, Ainslie PN.
    J Physiol; 2020 Apr; 598(8):1459-1473. PubMed ID: 31912506
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Economy during a simulated laboratory test triathlon is highly related to Olympic distance triathlon.
    Miura H, Kitagawa K, Ishiko T.
    Int J Sports Med; 1997 May; 18(4):276-80. PubMed ID: 9231844
    [Abstract] [Full Text] [Related]

  • 39. The effect of adding CO2 to hypoxic inspired gas on cerebral blood flow velocity and breathing during incremental exercise.
    Fan JL, Kayser B.
    PLoS One; 2013 May; 8(11):e81130. PubMed ID: 24278389
    [Abstract] [Full Text] [Related]

  • 40. Impact of high-intensity interval training and moderate-intensity continuous training on resting and postexercise cardiac troponin T concentration.
    Nie J, Zhang H, Kong Z, George K, Little JP, Tong TK, Li F, Shi Q.
    Exp Physiol; 2018 Mar 01; 103(3):370-380. PubMed ID: 29247498
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.