These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


135 related items for PubMed ID: 32786599

  • 1. Biodegradation and Abiotic Degradation of Trifluralin: A Commonly Used Herbicide with a Poorly Understood Environmental Fate.
    Coleman NV, Rich DJ, Tang FHM, Vervoort RW, Maggi F.
    Environ Sci Technol; 2020 Sep 01; 54(17):10399-10410. PubMed ID: 32786599
    [Abstract] [Full Text] [Related]

  • 2. Environmental fate of trifluralin.
    Grover R, Wolt JD, Cessna AJ, Schiefer HB.
    Rev Environ Contam Toxicol; 1997 Sep 01; 153():1-64. PubMed ID: 9380893
    [Abstract] [Full Text] [Related]

  • 3. On-farm bioremediation of dimethazone and trifluralin residues in runoff water from an agricultural field.
    Antonious GF.
    J Environ Sci Health B; 2012 Sep 01; 47(7):608-21. PubMed ID: 22560023
    [Abstract] [Full Text] [Related]

  • 4. Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops.
    Mamy L, Barriuso E, Gabrielle B.
    Pest Manag Sci; 2005 Sep 01; 61(9):905-16. PubMed ID: 16041722
    [Abstract] [Full Text] [Related]

  • 5. Effect of manure on glyphosate and trifluralin mineralization in soil.
    Reimer M, Farenhorst A, Gaultier J.
    J Environ Sci Health B; 2005 Sep 01; 40(4):605-17. PubMed ID: 16047883
    [Abstract] [Full Text] [Related]

  • 6. Comparison among soil Series and extraction methods for the analysis of trifluralin.
    Garimella UI, Stearman GK, Wells MJ.
    J Agric Food Chem; 2000 Dec 01; 48(12):5874-80. PubMed ID: 11312763
    [Abstract] [Full Text] [Related]

  • 7. Measurement and modelling of glyphosate fate compared with that of herbicides replaced as a result of the introduction of glyphosate-resistant oilseed rape.
    Mamy L, Gabrielle B, Barriuso E.
    Pest Manag Sci; 2008 Mar 01; 64(3):262-75. PubMed ID: 18205189
    [Abstract] [Full Text] [Related]

  • 8. Bioremediation of a trifluralin contaminated soil using bioaugmentation with novel isolated bacterial strains and cyclodextrin.
    Lara-Moreno A, Morillo E, Merchán F, Madrid F, Villaverde J.
    Sci Total Environ; 2022 Sep 20; 840():156695. PubMed ID: 35709999
    [Abstract] [Full Text] [Related]

  • 9. The capacity of some newly bacteria and fungi for biodegradation of herbicide trifluralin under agiated culture media.
    Erguven GO, Bayhan H, Ikizoglu B, Kanat G, Nuhoglu Y.
    Cell Mol Biol (Noisy-le-grand); 2016 May 30; 62(6):74-9. PubMed ID: 27262807
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Trifluralin transfer from top soil.
    Malterre F, Pierre JG, Schiavon M.
    Ecotoxicol Environ Saf; 1998 Feb 30; 39(2):98-103. PubMed ID: 9515081
    [Abstract] [Full Text] [Related]

  • 12. Using 19F NMR spectroscopy to determine trifluralin binding to soil.
    Strynar M, Dec J, Benesi A, Jones AD, Fry RA, Bollag JM.
    Environ Sci Technol; 2004 Dec 15; 38(24):6645-55. PubMed ID: 15669323
    [Abstract] [Full Text] [Related]

  • 13. Biodegradation of fipronil: current state of mechanisms of biodegradation and future perspectives.
    Zhou Z, Wu X, Lin Z, Pang S, Mishra S, Chen S.
    Appl Microbiol Biotechnol; 2021 Oct 15; 105(20):7695-7708. PubMed ID: 34586458
    [Abstract] [Full Text] [Related]

  • 14. Mechanized and natural soil-to-air transfer of trifluralin and prometryn from a cotton field in Las Cruces, New Mexico.
    Holmén BA, Kasumba J, Hiscox A, Wang J, Miller D.
    J Agric Food Chem; 2013 Oct 16; 61(41):9776-83. PubMed ID: 24040758
    [Abstract] [Full Text] [Related]

  • 15. Genes similar to naphthalene dioxygenase genes in trifluralin-degrading bacteria.
    Bellinaso Mde L, Henriques JA, Gaylarde CC, Greer CW.
    Pest Manag Sci; 2004 May 16; 60(5):474-8. PubMed ID: 15154514
    [Abstract] [Full Text] [Related]

  • 16. Pendimethalin Nitroreductase Is Responsible for the Initial Pendimethalin Degradation Step in Bacillus subtilis Y3.
    Ni HY, Wang F, Li N, Yao L, Dai C, He Q, He J, Hong Q.
    Appl Environ Microbiol; 2016 Dec 15; 82(24):7052-7062. PubMed ID: 27694234
    [Abstract] [Full Text] [Related]

  • 17. Previous degradation study of two herbicides to simulate their fate in a sandy loam soil: Effect of the temperature and the organic amendments.
    Marín-Benito JM, Carpio MJ, Sánchez-Martín MJ, Rodríguez-Cruz MS.
    Sci Total Environ; 2019 Feb 25; 653():1301-1310. PubMed ID: 30759570
    [Abstract] [Full Text] [Related]

  • 18. Trifluralin residues in soils from main cotton fields of China and associated ecological risk.
    Li Y, Li C, Li B, Ma Z.
    Chemosphere; 2021 Dec 25; 284():131300. PubMed ID: 34225126
    [Abstract] [Full Text] [Related]

  • 19. Analysis of trifluralin and other dinitroaniline herbicide residues by zero-order and derivative ultraviolet spectrophotometry.
    Traore S, Aaron JJ.
    Analyst; 1989 May 25; 114(5):609-13. PubMed ID: 2757231
    [Abstract] [Full Text] [Related]

  • 20. Leaching of trifluralin, metolachlor, and metribuzin in a clay loam soil of Louisiana.
    Kim JH, Feagley SE.
    J Environ Sci Health B; 2002 Sep 25; 37(5):393-403. PubMed ID: 12369758
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.