These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
221 related items for PubMed ID: 32786857
1. Transcription Factor PdeR Is Involved in Fungal Development, Metabolic Change, and Pathogenesis of Gray Mold Botrytis cinerea. Han JW, Kim DY, Lee YJ, Choi YR, Kim B, Choi GJ, Han SW, Kim H. J Agric Food Chem; 2020 Aug 26; 68(34):9171-9179. PubMed ID: 32786857 [Abstract] [Full Text] [Related]
2. The Fungal Transcription Factor BcTbs1 from Botrytis cinerea Promotes Pathogenicity via Host Cellulose Degradation. Zhang Y, Jia C, Liu Y, Li G, Li B, Shi W, Zhang Y, Hou J, Qin Q, Zhang M, Qin J. J Agric Food Chem; 2024 Sep 25; 72(38):20816-20830. PubMed ID: 39261294 [Abstract] [Full Text] [Related]
5. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus Botrytis cinerea. Sun J, Sun CH, Chang HW, Yang S, Liu Y, Zhang MZ, Hou J, Zhang H, Li GH, Qin QM. Int J Mol Sci; 2021 Feb 08; 22(4):. PubMed ID: 33567582 [Abstract] [Full Text] [Related]
8. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Botrytis cinerea. Ren W, Qian C, Ren D, Cai Y, Deng Z, Zhang N, Wang C, Wang Y, Zhu P, Xu L. mBio; 2024 Jul 17; 15(7):e0013324. PubMed ID: 38814088 [Abstract] [Full Text] [Related]
13. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development. Liu Y, Liu JK, Li GH, Zhang MZ, Zhang YY, Wang YY, Hou J, Yang S, Sun J, Qin QM. Mol Plant Pathol; 2019 May 17; 20(5):731-747. PubMed ID: 31008573 [Abstract] [Full Text] [Related]
15. Botrytis cinerea Transcription Factor BcXyr1 Regulates (Hemi-)Cellulase Production and Fungal Virulence. Ma L, Liu T, Zhang K, Shi H, Zhang L, Zou G, Sharon A. mSystems; 2022 Dec 20; 7(6):e0104222. PubMed ID: 36468854 [Abstract] [Full Text] [Related]
17. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in Botrytis Cinerea. Vasquez-Montaño E, Hoppe G, Vega A, Olivares-Yañez C, Canessa P. mBio; 2020 Aug 04; 11(4):. PubMed ID: 32753496 [Abstract] [Full Text] [Related]