These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
158 related items for PubMed ID: 32789321
1. Plasmon of Au nanorods activates metal-organic frameworks for both the hydrogen evolution reaction and oxygen evolution reaction. Zhang W, Wang S, Yang SA, Xia XH, Zhou YG. Nanoscale; 2020 Aug 28; 12(33):17290-17297. PubMed ID: 32789321 [Abstract] [Full Text] [Related]
2. Boosting Electrocatalytic Hydrogen Evolution over Metal-Organic Frameworks by Plasmon-Induced Hot-Electron Injection. Wang SS, Jiao L, Qian Y, Hu WC, Xu GY, Wang C, Jiang HL. Angew Chem Int Ed Engl; 2019 Jul 29; 58(31):10713-10717. PubMed ID: 31155823 [Abstract] [Full Text] [Related]
3. Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. Shi Y, Wang J, Wang C, Zhai TT, Bao WJ, Xu JJ, Xia XH, Chen HY. J Am Chem Soc; 2015 Jun 17; 137(23):7365-70. PubMed ID: 26020144 [Abstract] [Full Text] [Related]
4. Promoting Active Species Generation by Plasmon-Induced Hot-Electron Excitation for Efficient Electrocatalytic Oxygen Evolution. Liu G, Li P, Zhao G, Wang X, Kong J, Liu H, Zhang H, Chang K, Meng X, Kako T, Ye J. J Am Chem Soc; 2016 Jul 27; 138(29):9128-36. PubMed ID: 27380539 [Abstract] [Full Text] [Related]
5. Boosting electrocatalytic hydrogen evolution by plasmon-driven hot-electron excitation. Zhang HX, Li Y, Li MY, Zhang H, Zhang J. Nanoscale; 2018 Feb 01; 10(5):2236-2241. PubMed ID: 29340395 [Abstract] [Full Text] [Related]
6. Boosting Electrocatalytic Oxygen Evolution Performance of Ultrathin Co/Ni-MOF Nanosheets via Plasmon-Induced Hot Carriers. Wang M, Wang P, Li C, Li H, Jin Y. ACS Appl Mater Interfaces; 2018 Oct 31; 10(43):37095-37102. PubMed ID: 30253643 [Abstract] [Full Text] [Related]
7. Design-controlled synthesis of IrO2 sub-monolayers on Au nanoflowers: marrying plasmonic and electrocatalytic properties. de Freitas IC, Parreira LS, Barbosa ECM, Novaes BA, Mou T, Alves TV, Quiroz J, Wang YC, Slater TJ, Thomas A, Wang B, Haigh SJ, Camargo PHC. Nanoscale; 2020 Jun 21; 12(23):12281-12291. PubMed ID: 32319490 [Abstract] [Full Text] [Related]
8. Promoting Plasmonic Hot Hole Extraction and Photothermal Effect for the Oxygen Evolution Reactions. Tang T, Li M, Liang Z, Hu YW, Chen J, Wang G, Chen J, Ye KH, Lin Z. Chemistry; 2023 Jun 19; 29(34):e202300225. PubMed ID: 36967610 [Abstract] [Full Text] [Related]
9. Enhanced Electrochemistry of Single Plasmonic Nanoparticles. Zhang W, Li J, Xia XH, Zhou YG. Angew Chem Int Ed Engl; 2022 Feb 14; 61(8):e202115819. PubMed ID: 34890086 [Abstract] [Full Text] [Related]
10. Strain-promoted conductive metal-benzenhexathiolate frameworks for overall water splitting. Wang X, Niu H, Wan X, Zhang Z, Wang FR, Guo Y. J Colloid Interface Sci; 2022 Oct 15; 624():160-167. PubMed ID: 35660885 [Abstract] [Full Text] [Related]
11. Plasmon-promoted electrocatalytic water splitting on metal-semiconductor nanocomposites: the interfacial charge transfer and the real catalytic sites. Du L, Shi G, Zhao Y, Chen X, Sun H, Liu F, Cheng F, Xie W. Chem Sci; 2019 Nov 07; 10(41):9605-9612. PubMed ID: 32055334 [Abstract] [Full Text] [Related]
12. Fabrication of Co(Ni)-P surface bonding states on core-shell Co(OH)2@P-NiCo-LDH towards electrocatalytic hydrogen evolution reaction. Song N, Hong S, Xiao M, Zuo Y, Jiang E, Li C, Dong H. J Colloid Interface Sci; 2021 Jan 15; 582(Pt B):535-542. PubMed ID: 32911402 [Abstract] [Full Text] [Related]
13. Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential. Zheng F, Zhang Z, Xiang D, Li P, Du C, Zhuang Z, Li X, Chen W. J Colloid Interface Sci; 2019 Nov 01; 555():541-547. PubMed ID: 31404838 [Abstract] [Full Text] [Related]
14. Iron-Based Metal-Organic Framework System as an Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions. Gu M, Wang SC, Chen C, Xiong D, Yi FY. Inorg Chem; 2020 May 04; 59(9):6078-6086. PubMed ID: 32310645 [Abstract] [Full Text] [Related]
15. Three-Dimensional N-Doped Carbon Nanotube Frameworks on Ni Foam Derived from a Metal-Organic Framework as a Bifunctional Electrocatalyst for Overall Water Splitting. Yuan Q, Yu Y, Gong Y, Bi X. ACS Appl Mater Interfaces; 2020 Jan 22; 12(3):3592-3602. PubMed ID: 31858792 [Abstract] [Full Text] [Related]
16. Enhanced electrocatalytic oxygen evolution of α-Co(OH)2 nanosheets on carbon nanotube/polyimide films. Jiang Y, Li X, Wang T, Wang C. Nanoscale; 2016 May 14; 8(18):9667-75. PubMed ID: 27104298 [Abstract] [Full Text] [Related]
17. Stable Iron Hydroxide Nanosheets@Cobalt-Metal-Organic-Framework Heterostructure for Efficient Electrocatalytic Oxygen Evolution. Gao Z, Yu ZW, Liu FQ, Yang C, Yuan YH, Yu Y, Luo F. ChemSusChem; 2019 Oct 21; 12(20):4623-4628. PubMed ID: 31407864 [Abstract] [Full Text] [Related]
19. Highly Efficient and Stable Catalyst Based on Co(OH)2@Ni Electroplated on Cu-Metallized Cotton Textile for Water Splitting. Wang Z, Ji S, Liu F, Wang H, Wang X, Wang Q, Pollet BG, Wang R. ACS Appl Mater Interfaces; 2019 Aug 21; 11(33):29791-29798. PubMed ID: 31343158 [Abstract] [Full Text] [Related]
20. MOF-derived Mn doped porous CoP nanosheets as efficient and stable bifunctional electrocatalysts for water splitting. Li Y, Jia B, Chen B, Liu Q, Cai M, Xue Z, Fan Y, Wang HP, Su CY, Li G. Dalton Trans; 2018 Oct 23; 47(41):14679-14685. PubMed ID: 30277490 [Abstract] [Full Text] [Related] Page: [Next] [New Search]