These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


289 related items for PubMed ID: 32811486

  • 1. Metabolic engineering of Escherichia coli for L-malate production anaerobically.
    Jiang Y, Zheng T, Ye X, Xin F, Zhang W, Dong W, Ma J, Jiang M.
    Microb Cell Fact; 2020 Aug 18; 19(1):165. PubMed ID: 32811486
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli.
    Zhang X, Shanmugam KT, Ingram LO.
    Appl Environ Microbiol; 2010 Apr 18; 76(8):2397-401. PubMed ID: 20154114
    [Abstract] [Full Text] [Related]

  • 4. Metabolic engineering of Escherichia coli W3110 to produce L-malate.
    Dong X, Chen X, Qian Y, Wang Y, Wang L, Qiao W, Liu L.
    Biotechnol Bioeng; 2017 Mar 18; 114(3):656-664. PubMed ID: 27668703
    [Abstract] [Full Text] [Related]

  • 5. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A, Garza E, Manow R, Wang J, Gao Y, Grayburn S, Zhou S.
    BMC Syst Biol; 2016 Apr 16; 10():31. PubMed ID: 27083875
    [Abstract] [Full Text] [Related]

  • 6. Engineering of Escherichia coli for Krebs cycle-dependent production of malic acid.
    Trichez D, Auriol C, Baylac A, Irague R, Dressaire C, Carnicer-Heras M, Heux S, François JM, Walther T.
    Microb Cell Fact; 2018 Jul 16; 17(1):113. PubMed ID: 30012131
    [Abstract] [Full Text] [Related]

  • 7. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate.
    Jantama K, Haupt MJ, Svoronos SA, Zhang X, Moore JC, Shanmugam KT, Ingram LO.
    Biotechnol Bioeng; 2008 Apr 01; 99(5):1140-53. PubMed ID: 17972330
    [Abstract] [Full Text] [Related]

  • 8. [Effect of co-expression of nicotinic acid phosphoribosyl transferase and pyruvate carboxylase on succinic acid production in Escherichia coli BA002].
    Cao W, Gou D, Liang L, Liu R, Chen K, Ma J, Jiang M.
    Sheng Wu Gong Cheng Xue Bao; 2013 Dec 01; 29(12):1855-9. PubMed ID: 24660633
    [Abstract] [Full Text] [Related]

  • 9. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures.
    Berríos-Rivera SJ, Bennett GN, San KY.
    Metab Eng; 2002 Jul 01; 4(3):230-7. PubMed ID: 12616692
    [Abstract] [Full Text] [Related]

  • 10. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.
    Berríos-Rivera SJ, Bennett GN, San KY.
    Metab Eng; 2002 Jul 01; 4(3):217-29. PubMed ID: 12616691
    [Abstract] [Full Text] [Related]

  • 11. Regulation of NAD(H) pool and NADH/NAD(+) ratio by overexpression of nicotinic acid phosphoribosyltransferase for succinic acid production in Escherichia coli NZN111.
    Liang L, Liu R, Wang G, Gou D, Ma J, Chen K, Jiang M, Wei P, Ouyang P.
    Enzyme Microb Technol; 2012 Oct 10; 51(5):286-93. PubMed ID: 22975127
    [Abstract] [Full Text] [Related]

  • 12. The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli.
    Berríos-Rivera SJ, San KY, Bennett GN.
    Metab Eng; 2002 Jul 10; 4(3):238-47. PubMed ID: 12616693
    [Abstract] [Full Text] [Related]

  • 13. Increasing reducing power output (NADH) of glucose catabolism for reduction of xylose to xylitol by genetically engineered Escherichia coli AI05.
    Iverson A, Garza E, Zhao J, Wang Y, Zhao X, Wang J, Manow R, Zhou S.
    World J Microbiol Biotechnol; 2013 Jul 10; 29(7):1225-32. PubMed ID: 23435875
    [Abstract] [Full Text] [Related]

  • 14. Co-expression of phosphoenolpyruvate carboxykinase and nicotinic acid phosphoribosyltransferase for succinate production in engineered Escherichia coli.
    Jiang M, Chen X, Liang L, Liu R, Wan Q, Wu M, Zhang H, Ma J, Chen K, Ouyang P.
    Enzyme Microb Technol; 2014 Mar 05; 56():8-14. PubMed ID: 24564896
    [Abstract] [Full Text] [Related]

  • 15. Enhancement of succinate yield by manipulating NADH/NAD+ ratio and ATP generation.
    Li J, Li Y, Cui Z, Liang Q, Qi Q.
    Appl Microbiol Biotechnol; 2017 Apr 05; 101(8):3153-3161. PubMed ID: 28108762
    [Abstract] [Full Text] [Related]

  • 16. Enhancement of succinate production by metabolically engineered Escherichia coli with co-expression of nicotinic acid phosphoribosyltransferase and pyruvate carboxylase.
    Ma J, Gou D, Liang L, Liu R, Chen X, Zhang C, Zhang J, Chen K, Jiang M.
    Appl Microbiol Biotechnol; 2013 Aug 05; 97(15):6739-47. PubMed ID: 23740313
    [Abstract] [Full Text] [Related]

  • 17. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C.
    Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, Ingram LO.
    Biotechnol Bioeng; 2008 Dec 01; 101(5):881-93. PubMed ID: 18781696
    [Abstract] [Full Text] [Related]

  • 18. [Effect of overexpression of nicotinic acid mononucleotide adenylyltransferase on succinic acid production in Escherichia coli NZN111].
    Gou D, Liang L, Liu R, Zhang C, Wu M, Ma J, Chen K, Zhu J, Jiang M.
    Sheng Wu Gong Cheng Xue Bao; 2012 Sep 01; 28(9):1059-69. PubMed ID: 23289308
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli.
    Ying H, Tao S, Wang J, Ma W, Chen K, Wang X, Ouyang P.
    Microb Cell Fact; 2017 Mar 27; 16(1):52. PubMed ID: 28347340
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.