These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 32827922

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Viperin protein inhibits the replication of caprine parainfluenza virus type 3 (CPIV 3) by interaction with viral N protein.
    Li W, Li J, Sun M, Yang L, Mao L, Hao F, Liu M, Zhang W.
    Antiviral Res; 2020 Dec; 184():104903. PubMed ID: 32800881
    [Abstract] [Full Text] [Related]

  • 3. Cholesterol-rich lipid rafts play a critical role in bovine parainfluenza virus type 3 (BPIV3) infection.
    Li L, Yu L, Hou X.
    Res Vet Sci; 2017 Oct; 114():341-347. PubMed ID: 28654867
    [Abstract] [Full Text] [Related]

  • 4. Interferon-stimulated genes inhibit caprine parainfluenza virus type 3 replication in Madin-Darby bovine kidney cells.
    Li J, Mao L, Xiao F, Liao Z, Yin J, Li W, Sun M, Liu M, Ji X, Liu C, Xue T, Yang L, Zhang W.
    Vet Microbiol; 2020 Feb; 241():108573. PubMed ID: 31928705
    [Abstract] [Full Text] [Related]

  • 5. Critical role of the lipid rafts in caprine herpesvirus type 1 infection in vitro.
    Pratelli A, Colao V.
    Virus Res; 2016 Jan 04; 211():186-93. PubMed ID: 26475997
    [Abstract] [Full Text] [Related]

  • 6. Cellular microRNA bta-miR-222 suppresses caprine parainfluenza virus type 3 replication via downregulation of interferon regulatory factor 2.
    Li J, Mao L, Zhong C, Li W, Hao F, Sun M, Zhu X, Ji X, Xiao F, Yang L, Zhang W, Liu M.
    Vet Microbiol; 2018 Oct 04; 224():58-65. PubMed ID: 30269791
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Methyl-β-cyclodextrin inhibits EV-D68 virus entry by perturbing the accumulation of virus particles and ICAM-5 in lipid rafts.
    Jiang Y, Liu S, Shen S, Guo H, Huang H, Wei W.
    Antiviral Res; 2020 Apr 04; 176():104752. PubMed ID: 32101770
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Cholesterol dependence of Newcastle Disease Virus entry.
    Martín JJ, Holguera J, Sánchez-Felipe L, Villar E, Muñoz-Barroso I.
    Biochim Biophys Acta; 2012 Mar 04; 1818(3):753-61. PubMed ID: 22192779
    [Abstract] [Full Text] [Related]

  • 15. Cholesterol-Rich Lipid Rafts in the Cellular Membrane Play an Essential Role in Avian Reovirus Replication.
    Wang Y, Zhang Y, Zhang C, Hu M, Yan Q, Zhao H, Zhang X, Wu Y.
    Front Microbiol; 2020 Mar 04; 11():597794. PubMed ID: 33224131
    [Abstract] [Full Text] [Related]

  • 16. Temporal Dynamics of the Ruminant Type I IFN-Induced Antiviral State against Homologous Parainfluenza Virus 3 Challenge In Vitro.
    Sun M, Hao F, Li W, Cheng Z, Zhang W, Yang L, Mao L, Liu M.
    Viruses; 2022 May 11; 14(5):. PubMed ID: 35632770
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Role of the lipid rafts in the life cycle of canine coronavirus.
    Pratelli A, Colao V.
    J Gen Virol; 2015 Feb 11; 96(Pt 2):331-337. PubMed ID: 25381058
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.