These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


200 related items for PubMed ID: 32831154

  • 1. Comparison of correction factor for both dynamic total thermal insulation and evaporative resistance between ISO 7933 and ISO 9920.
    Ueno S.
    J Physiol Anthropol; 2020 Aug 24; 39(1):23. PubMed ID: 32831154
    [Abstract] [Full Text] [Related]

  • 2. The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model.
    Huang Q, Li J.
    Int J Environ Res Public Health; 2020 Sep 05; 17(18):. PubMed ID: 32899522
    [Abstract] [Full Text] [Related]

  • 3. On the Effect of Thermophysical Properties of Clothing on the Heat Strain Predicted by PHS Model.
    d'Ambrosio Alfano FR, Palella BI, Riccio G, Malchaire J.
    Ann Occup Hyg; 2016 Mar 05; 60(2):231-51. PubMed ID: 26420266
    [Abstract] [Full Text] [Related]

  • 4. Insulation and Evaporative Resistance of Clothing for Sugarcane Harvesters and Chemical Sprayers, and Their Application in PHS Model-Based Exposure Predictions.
    Kuklane K, Toma R, Lucas RAI.
    Int J Environ Res Public Health; 2020 Apr 28; 17(9):. PubMed ID: 32354137
    [Abstract] [Full Text] [Related]

  • 5. Relationship between clothing ventilation and thermal insulation.
    Bouskill LM, Havenith G, Kuklane K, Parsons KC, Withey WR.
    AIHA J (Fairfax, Va); 2002 Apr 28; 63(3):262-8. PubMed ID: 12173174
    [Abstract] [Full Text] [Related]

  • 6. Protection against cold in prehospital care: evaporative heat loss reduction by wet clothing removal or the addition of a vapor barrier--a thermal manikin study.
    Henriksson O, Lundgren P, Kuklane K, Holmér I, Naredi P, Bjornstig U.
    Prehosp Disaster Med; 2012 Feb 28; 27(1):53-8. PubMed ID: 22445055
    [Abstract] [Full Text] [Related]

  • 7. Occupational heat stress and associated productivity loss estimation using the PHS model (ISO 7933): a case study from workplaces in Chennai, India.
    Lundgren K, Kuklane K, Venugopal V.
    Glob Health Action; 2014 Feb 28; 7():25283. PubMed ID: 25373413
    [Abstract] [Full Text] [Related]

  • 8. The effects of wind and human movement on the heat and vapour transfer properties of clothing.
    Parsons KC, Havenith G, Holmér I, Nilsson H, Malchaire J.
    Ann Occup Hyg; 1999 Jul 28; 43(5):347-52. PubMed ID: 10481634
    [Abstract] [Full Text] [Related]

  • 9. Effect of posture positions on the evaporative resistance and thermal insulation of clothing.
    Wu YS, Fan JT, Yu W.
    Ergonomics; 2011 Mar 28; 54(3):301-13. PubMed ID: 21390960
    [Abstract] [Full Text] [Related]

  • 10. Non-evaporative effects of a wet mid layer on heat transfer through protective clothing.
    Bröde P, Havenith G, Wang X, Candas V, den Hartog EA, Griefahn B, Holmér I, Kuklane K, Meinander H, Nocker W, Richards M.
    Eur J Appl Physiol; 2008 Sep 28; 104(2):341-9. PubMed ID: 18084775
    [Abstract] [Full Text] [Related]

  • 11. Correction of the heat loss method for calculating clothing real evaporative resistance.
    Wang F, Zhang C, Lu Y.
    J Therm Biol; 2015 Aug 28; 52():45-51. PubMed ID: 26267497
    [Abstract] [Full Text] [Related]

  • 12. Clothing resultant thermal insulation determined on a movable thermal manikin. Part I: effects of wind and body movement on total insulation.
    Lu Y, Wang F, Wan X, Song G, Shi W, Zhang C.
    Int J Biometeorol; 2015 Oct 28; 59(10):1475-86. PubMed ID: 25597033
    [Abstract] [Full Text] [Related]

  • 13. Occupational needs and evaluation methods for cold protective clothing.
    Anttonen H.
    Arctic Med Res; 1993 Oct 28; 52 Suppl 9():1-76. PubMed ID: 8048995
    [Abstract] [Full Text] [Related]

  • 14. Apparent evaporative resistance at critical conditions for five clothing ensembles.
    Caravello V, McCullough EA, Ashley CD, Bernard TE.
    Eur J Appl Physiol; 2008 Sep 28; 104(2):361-7. PubMed ID: 18172671
    [Abstract] [Full Text] [Related]

  • 15. Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method?
    Wang F, Gao C, Kuklane K, Holmér I.
    Ann Occup Hyg; 2011 Aug 28; 55(7):775-83. PubMed ID: 21669906
    [Abstract] [Full Text] [Related]

  • 16. Avian thermoregulation in the heat: scaling of heat tolerance and evaporative cooling capacity in three southern African arid-zone passerines.
    Whitfield MC, Smit B, McKechnie AE, Wolf BO.
    J Exp Biol; 2015 Jun 28; 218(Pt 11):1705-14. PubMed ID: 26041032
    [Abstract] [Full Text] [Related]

  • 17. The total thermal insulation of the new-born baby.
    Hey EN, Katz G, O'Connell B.
    J Physiol; 1970 May 28; 207(3):683-98. PubMed ID: 5503276
    [Abstract] [Full Text] [Related]

  • 18. Protective clothing and heat stress.
    Holmér I.
    Ergonomics; 1995 Jan 28; 38(1):166-82. PubMed ID: 7875118
    [Abstract] [Full Text] [Related]

  • 19. Garment size effect of thermal protective clothing on global and local evaporative cooling of walking manikin in a hot environment.
    Guan M, Li J.
    Int J Biometeorol; 2020 Mar 28; 64(3):485-499. PubMed ID: 32016640
    [Abstract] [Full Text] [Related]

  • 20. Can the PHS model (ISO7933) predict reasonable thermophysiological responses while wearing protective clothing in hot environments?
    Wang F, Kuklane K, Gao C, Holmér I.
    Physiol Meas; 2011 Feb 28; 32(2):239-49. PubMed ID: 21178244
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.