These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
200 related items for PubMed ID: 32831154
21. Clothing resultant thermal insulation determined on a movable thermal manikin. Part II: effects of wind and body movement on local insulation. Lu Y, Wang F, Wan X, Song G, Zhang C, Shi W. Int J Biometeorol; 2015 Oct; 59(10):1487-98. PubMed ID: 25605409 [Abstract] [Full Text] [Related]
22. Increased Air Velocity Reduces Thermal and Cardiovascular Strain in Young and Older Males during Humid Exertional Heat Stress. Wright Beatty HE, Hardcastle SG, Boulay P, Flouris AD, Kenny GP. J Occup Environ Hyg; 2015 Oct; 12(9):625-34. PubMed ID: 25897617 [Abstract] [Full Text] [Related]
23. Effects of thermal stress during rest and exercise in the paediatric population. Falk B. Sports Med; 1998 Apr; 25(4):221-40. PubMed ID: 9587181 [Abstract] [Full Text] [Related]
27. Clothing insulation in a hypobaric environment. Chang SK, Santee WR. Aviat Space Environ Med; 1996 Sep 15; 67(9):827-34. PubMed ID: 9025797 [Abstract] [Full Text] [Related]
28. New functions and applications of walter, the sweating fabric manikin. Fan J, Qian X. Eur J Appl Physiol; 2004 Sep 15; 92(6):641-4. PubMed ID: 15138829 [Abstract] [Full Text] [Related]
29. Validation of standard ASTM F2732 and comparison with ISO 11079 with respect to comfort temperature ratings for cold protective clothing. Gao C, Lin LY, Halder A, Kuklane K, Holmér I. Appl Ergon; 2015 Jan 15; 46 Pt A():44-53. PubMed ID: 25042791 [Abstract] [Full Text] [Related]
30. Quantification of heat balance during work in three types of asbestos-protective clothing. Holmér I, Nilsson H, Rissanen S, Hirata K, Smolander J. Int Arch Occup Environ Health; 1992 Jan 15; 64(4):243-9. PubMed ID: 1468792 [Abstract] [Full Text] [Related]
31. Worker heat stress prevention and work metabolism estimation: comparing two assessment methods of the heart rate thermal component. Dubé PA, Imbeau D, Dubeau D, Auger I. Ergonomics; 2019 Aug 15; 62(8):1066-1085. PubMed ID: 30961471 [Abstract] [Full Text] [Related]
33. Thermal Insulation of Protective Clothing Materials in Extreme Cold Conditions. Zemzem M, Hallé S, Vinches L. Saf Health Work; 2023 Mar 15; 14(1):107-117. PubMed ID: 36941933 [Abstract] [Full Text] [Related]
34. Thermal insulation and clothing area factors of typical Arabian Gulf clothing ensembles for males and females: measurements using thermal manikins. Al-ajmi FF, Loveday DL, Bedwell KH, Havenith G. Appl Ergon; 2008 May 15; 39(3):407-14. PubMed ID: 18045571 [Abstract] [Full Text] [Related]
35. Partitioning of evaporative water loss in white-winged doves: plasticity in response to short-term thermal acclimation. McKechnie AE, Wolf BO. J Exp Biol; 2004 Jan 15; 207(Pt 2):203-10. PubMed ID: 14668305 [Abstract] [Full Text] [Related]
36. Effect of sweating set rate on clothing real evaporative resistance determined on a sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r). Lu Y, Wang F, Peng H, Shi W, Song G. Int J Biometeorol; 2016 Apr 15; 60(4):481-8. PubMed ID: 26150329 [Abstract] [Full Text] [Related]
38. Human responses in heat - comparison of the Predicted Heat Strain and the Fiala multi-node model for a case of intermittent work. Lundgren-Kownacki K, Martínez N, Johansson B, Psikuta A, Annaheim S, Kuklane K. J Therm Biol; 2017 Dec 15; 70(Pt A):45-52. PubMed ID: 29074025 [Abstract] [Full Text] [Related]
39. Physiologically derived critical evaporative coefficients for protective clothing ensembles. Kenney WL, Lewis DA, Hyde DE, Dyksterhouse TS, Armstrong CG, Fowler SR, Williams DA. J Appl Physiol (1985); 1987 Sep 15; 63(3):1095-9. PubMed ID: 3654457 [Abstract] [Full Text] [Related]