These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
236 related items for PubMed ID: 32848172
1. Analysis of leaf morphology, secondary metabolites and proteins related to the resistance to Tetranychus cinnabarinus in cassava (Manihot esculenta Crantz). Yang Y, Luo X, Wei W, Fan Z, Huang T, Pan X. Sci Rep; 2020 Aug 26; 10(1):14197. PubMed ID: 32848172 [Abstract] [Full Text] [Related]
4. Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives. An F, Chen T, Stéphanie DM, Li K, Li QX, Carvalho LJ, Tomlins K, Li J, Gu B, Chen S. PLoS One; 2016 Aug 26; 11(3):e0152154. PubMed ID: 27023871 [Abstract] [Full Text] [Related]
5. Transcriptomic and proteomic response of Manihot esculenta to Tetranychus urticae infestation at different densities. Yang J, Wang GQ, Zhou Q, Lu W, Ma JQ, Huang JH. Exp Appl Acarol; 2019 Jun 26; 78(2):273-293. PubMed ID: 31168751 [Abstract] [Full Text] [Related]
7. Comparison of leaf proteomes of cassava (Manihot esculenta Crantz) cultivar NZ199 diploid and autotetraploid genotypes. An F, Fan J, Li J, Li QX, Li K, Zhu W, Wen F, Carvalho LJ, Chen S. PLoS One; 2014 Jun 26; 9(4):e85991. PubMed ID: 24727655 [Abstract] [Full Text] [Related]
8. Single-cell RNA-sequencing profiles reveal the developmental landscape of the Manihot esculenta Crantz leaves. Zang Y, Pei Y, Cong X, Ran F, Liu L, Wang C, Wang D, Min Y. Plant Physiol; 2023 Dec 30; 194(1):456-474. PubMed ID: 37706525 [Abstract] [Full Text] [Related]
9. Increased activities of peroxidase and polyphenol oxidase enhance cassava resistance to Tetranychus urticae. Liang X, Chen Q, Lu H, Wu C, Lu F, Tang J. Exp Appl Acarol; 2017 Mar 30; 71(3):195-209. PubMed ID: 28405840 [Abstract] [Full Text] [Related]
10. Expression patterns of members of the ethylene signaling-related gene families in response to dehydration stresses in cassava. Ren MY, Feng RJ, Shi HR, Lu LF, Yun TY, Peng M, Guan X, Zhang H, Wang JY, Zhang XY, Li CL, Chen YJ, He P, Zhang YD, Xie JH. PLoS One; 2017 Mar 30; 12(5):e0177621. PubMed ID: 28542282 [Abstract] [Full Text] [Related]
11. The early transcriptome response of cassava (Manihot esculenta Crantz) to mealybug (Phenacoccus manihoti) feeding. Rauwane ME, Odeny DA, Millar I, Rey C, Rees J. PLoS One; 2018 Mar 30; 13(8):e0202541. PubMed ID: 30133510 [Abstract] [Full Text] [Related]
12. Comparison of leaf transcriptomes of cassava "Xinxuan 048" diploid and autotetraploid plants. Yin L, Qu J, Zhou H, Shang X, Fang H, Lu J, Yan H. Genes Genomics; 2018 Sep 30; 40(9):927-935. PubMed ID: 30155710 [Abstract] [Full Text] [Related]
13. Transcriptomic study of the role of MeFtsZ2-1 in pigment accumulation in cassava leaves. Zang Y, Wu K, Liu L, Ran F, Wang C, Wu S, Wang D, Guo J, Min Y. BMC Genomics; 2024 May 07; 25(1):448. PubMed ID: 38802758 [Abstract] [Full Text] [Related]
14. Leaf proteomic analysis in cassava (Manihot esculenta, Crantz) during plant development, from planting of stem cutting to storage root formation. Mitprasat M, Roytrakul S, Jiemsup S, Boonseng O, Yokthongwattana K. Planta; 2011 Jun 07; 233(6):1209-21. PubMed ID: 21327816 [Abstract] [Full Text] [Related]
15. Metabolic profiles of Sri Lankan cassava mosaic virus-infected and healthy cassava (Manihot esculenta Crantz) cultivars with tolerance and susceptibility phenotypes. Chaowongdee S, Malichan S, Pongpamorn P, Paemanee A, Siriwan W. BMC Plant Biol; 2023 Apr 05; 23(1):178. PubMed ID: 37020181 [Abstract] [Full Text] [Related]
16. Comparative transcriptomics analysis reveals defense mechanisms of Manihot esculenta Crantz against Sri Lanka Cassava MosaicVirus. Chaowongdee S, Vannatim N, Malichan S, Kuncharoen N, Tongyoo P, Siriwan W. BMC Genomics; 2024 May 02; 25(1):436. PubMed ID: 38698332 [Abstract] [Full Text] [Related]
17. Effect of temperature on development and reproduction of the carmine spider mite, Tetranychus cinnabarinus (Acari: Tetranychiae), fed on cassava leaves. Zou Z, Xi J, Liu G, Song S, Xin T, Xia B. Exp Appl Acarol; 2018 Apr 02; 74(4):383-394. PubMed ID: 29516379 [Abstract] [Full Text] [Related]
18. Comparative Proteome Analysis of the Tuberous Roots of Six Cassava (Manihot esculenta) Varieties Reveals Proteins Related to Phenotypic Traits. Schmitz GJ, de Magalhães Andrade J, Valle TL, Labate CA, do Nascimento JR. J Agric Food Chem; 2016 Apr 27; 64(16):3293-301. PubMed ID: 26982619 [Abstract] [Full Text] [Related]
19. Involvement of abscisic acid-responsive element-binding factors in cassava (Manihot esculenta) dehydration stress response. Feng RJ, Ren MY, Lu LF, Peng M, Guan X, Zhou DB, Zhang MY, Qi DF, Li K, Tang W, Yun TY, Chen YF, Wang F, Zhang D, Shen Q, Liang P, Zhang YD, Xie JH. Sci Rep; 2019 Sep 02; 9(1):12661. PubMed ID: 31477771 [Abstract] [Full Text] [Related]
20. RNAi inhibition of feruloyl CoA 6'-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots. Liu S, Zainuddin IM, Vanderschuren H, Doughty J, Beeching JR. Plant Mol Biol; 2017 May 02; 94(1-2):185-195. PubMed ID: 28315989 [Abstract] [Full Text] [Related] Page: [Next] [New Search]