These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


531 related items for PubMed ID: 32857019

  • 21. Evaluation of physicochemical, mechanical and biological properties of chitosan/carboxymethyl cellulose reinforced with multiphasic calcium phosphate whisker-like fibers for bone tissue engineering.
    Matinfar M, Mesgar AS, Mohammadi Z.
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():341-353. PubMed ID: 30948070
    [Abstract] [Full Text] [Related]

  • 22. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering.
    Gao X, Zhang X, Song J, Xu X, Xu A, Wang M, Xie B, Huang E, Deng F, Wei S.
    Int J Nanomedicine; 2015 Jul; 10():7109-28. PubMed ID: 26604759
    [Abstract] [Full Text] [Related]

  • 23. Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair.
    Song J, Zhu G, Wang L, An G, Shi X, Wang Y.
    Biofabrication; 2017 Feb 14; 9(1):015018. PubMed ID: 28140360
    [Abstract] [Full Text] [Related]

  • 24. Structural and Surface Compatibility Study of Modified Electrospun Poly(ε-caprolactone) (PCL) Composites for Skin Tissue Engineering.
    Ghosal K, Manakhov A, Zajíčková L, Thomas S.
    AAPS PharmSciTech; 2017 Jan 01; 18(1):72-81. PubMed ID: 26883261
    [Abstract] [Full Text] [Related]

  • 25. Electrospun PLGA/PCL/OCP nanofiber membranes promote osteogenic differentiation of mesenchymal stem cells (MSCs).
    Wang Z, Liang R, Jiang X, Xie J, Cai P, Chen H, Zhan X, Lei D, Zhao J, Zheng L.
    Mater Sci Eng C Mater Biol Appl; 2019 Nov 01; 104():109796. PubMed ID: 31500029
    [Abstract] [Full Text] [Related]

  • 26. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.
    Arafat MT, Lam CX, Ekaputra AK, Wong SY, Li X, Gibson I.
    Acta Biomater; 2011 Feb 01; 7(2):809-20. PubMed ID: 20849985
    [Abstract] [Full Text] [Related]

  • 27. Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering.
    Prasad T, Shabeena EA, Vinod D, Kumary TV, Anil Kumar PR.
    J Mater Sci Mater Med; 2015 Jan 01; 26(1):5352. PubMed ID: 25578706
    [Abstract] [Full Text] [Related]

  • 28. Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering.
    Januariyasa IK, Ana ID, Yusuf Y.
    Mater Sci Eng C Mater Biol Appl; 2020 Feb 01; 107():110347. PubMed ID: 31761152
    [Abstract] [Full Text] [Related]

  • 29. Innovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation.
    Zhou G, Liu S, Ma Y, Xu W, Meng W, Lin X, Wang W, Wang S, Zhang J.
    Int J Nanomedicine; 2017 Feb 01; 12():7577-7588. PubMed ID: 29075116
    [Abstract] [Full Text] [Related]

  • 30. Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering.
    Gomes S, Rodrigues G, Martins G, Henriques C, Silva JC.
    Int J Biol Macromol; 2017 Sep 01; 102():1174-1185. PubMed ID: 28487195
    [Abstract] [Full Text] [Related]

  • 31. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response.
    Thuaksuban N, Nuntanaranont T, Pattanachot W, Suttapreyasri S, Cheung LK.
    Biomed Mater; 2011 Feb 01; 6(1):015009. PubMed ID: 21205996
    [Abstract] [Full Text] [Related]

  • 32. Magnetic bioactive glasses/Cisplatin loaded-chitosan (CS)-grafted- poly (ε-caprolactone) nanofibers against bone cancer treatment.
    Amini Z, Rudsary SS, Shahraeini SS, Dizaji BF, Goleij P, Bakhtiari A, Irani M, Sharifianjazi F.
    Carbohydr Polym; 2021 Apr 15; 258():117680. PubMed ID: 33593554
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Immobilisation of heparin on bacterial cellulose-chitosan nano-fibres surfaces via the cross-linking technique.
    Wang J, Wan Y, Huang Y.
    IET Nanobiotechnol; 2012 Jun 15; 6(2):52-7. PubMed ID: 22559707
    [Abstract] [Full Text] [Related]

  • 37. Fabrication of nanocomposite/nanofibrous functionally graded biomimetic scaffolds for osteochondral tissue regeneration.
    Hejazi F, Bagheri-Khoulenjani S, Olov N, Zeini D, Solouk A, Mirzadeh H.
    J Biomed Mater Res A; 2021 Sep 15; 109(9):1657-1669. PubMed ID: 33687800
    [Abstract] [Full Text] [Related]

  • 38. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering.
    Chen P, Liu L, Pan J, Mei J, Li C, Zheng Y.
    Mater Sci Eng C Mater Biol Appl; 2019 Apr 15; 97():325-335. PubMed ID: 30678918
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X, Liu L, Zhang Q.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb 15; 21(2):120-4. PubMed ID: 17357456
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 27.