These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


176 related items for PubMed ID: 32860113

  • 1. Photo-electrochemical detection of dopamine in human urine and calf serum based on MIL-101 (Cr)/carbon black.
    Li Z, Zhang H, Zha Q, Zhai C, Li W, Zeng L, Zhu M.
    Mikrochim Acta; 2020 Aug 28; 187(9):526. PubMed ID: 32860113
    [Abstract] [Full Text] [Related]

  • 2. Graphite paste electrodes modified with a sulfo-functionalized metal-organic framework (type MIL-101) for voltammetric sensing of dopamine.
    Gao LL, Sun WJ, Yin XM, Bu R, Gao EQ.
    Mikrochim Acta; 2019 Nov 11; 186(12):762. PubMed ID: 31712906
    [Abstract] [Full Text] [Related]

  • 3. A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine.
    Zhang L, Li S, Xin J, Ma H, Pang H, Tan L, Wang X.
    Mikrochim Acta; 2018 Dec 10; 186(1):9. PubMed ID: 30535722
    [Abstract] [Full Text] [Related]

  • 4. Metal-organic framework-based molecularly imprinted polymer as a high sensitive and selective hybrid for the determination of dopamine in injections and human serum samples.
    Zhang W, Duan D, Liu S, Zhang Y, Leng L, Li X, Chen N, Zhang Y.
    Biosens Bioelectron; 2018 Oct 30; 118():129-136. PubMed ID: 30075383
    [Abstract] [Full Text] [Related]

  • 5. An MXene-supported cobalt-MOF nanocomposite-printed electrochemical sensor with high sensitivity for blood creatinine detection in point-of-care settings.
    Roy D, Singh R, Mandal S, Chanda N.
    Anal Methods; 2024 Sep 19; 16(36):6183-6192. PubMed ID: 39189797
    [Abstract] [Full Text] [Related]

  • 6. Hybrid carbon nanotubes modified glassy carbon electrode for selective, sensitive and simultaneous detection of dopamine and uric acid.
    Guan JF, Zou J, Liu YP, Jiang XY, Yu JG.
    Ecotoxicol Environ Saf; 2020 Sep 15; 201():110872. PubMed ID: 32559693
    [Abstract] [Full Text] [Related]

  • 7. A covalent organic polymer-TiO2/Ti3C2 heterostructure as nonenzymatic biosensor for voltammetric detection of dopamine and uric acid.
    Lu X, Li S, Guo W, Zhang F, Qu F.
    Mikrochim Acta; 2021 Feb 22; 188(3):95. PubMed ID: 33619673
    [Abstract] [Full Text] [Related]

  • 8. MIL-88B(Fe) MOF modified screen-printed electrodes for non-enzymatic electrochemical sensing of malathion.
    Janjani P, Bhardwaj U, Agarwal M, Gupta R, Kushwaha HS.
    Environ Technol; 2024 May 22; 45(13):2649-2659. PubMed ID: 36772960
    [Abstract] [Full Text] [Related]

  • 9. Bimetallic Fe/Co-MOF dispersed in a PVA/chitosan multi-matrix hydrogel as a flexible sensor for the detection of lactic acid in sweat samples.
    Mukundan G, Ravipati M, Badhulika S.
    Mikrochim Acta; 2024 Sep 21; 191(10):614. PubMed ID: 39305317
    [Abstract] [Full Text] [Related]

  • 10. Simple strategy for sensitive detection of dopamine using CdTe QDs modified glassy carbon electrode.
    Yu HW, Zhang Z, Jiang JH, Pan HZ, Chang D.
    J Clin Lab Anal; 2018 Mar 21; 32(3):. PubMed ID: 28940690
    [Abstract] [Full Text] [Related]

  • 11. Molybdenum oxide-based metal-organic framework/polypyrrole nanocomposites for enhancing electrochemical detection of dopamine.
    Zhou K, Shen D, Li X, Chen Y, Hou L, Zhang Y, Sha J.
    Talanta; 2020 Mar 01; 209():120507. PubMed ID: 31892003
    [Abstract] [Full Text] [Related]

  • 12. An electrochemical sensor for bacterial lipopolysaccharide detection based on dual functional Cu2+-modified metal-organic framework nanoparticles.
    Li Z, Dai G, Luo F, Lu Y, Zhang J, Chu Z, He P, Zhang F, Wang Q.
    Mikrochim Acta; 2020 Jun 30; 187(7):415. PubMed ID: 32607635
    [Abstract] [Full Text] [Related]

  • 13. Sensitive Electrochemical Sensor Based On an Aminated MIL-101(Cr) MOF for the Detection of Tartrazine.
    Massah RT, Zambou Jiokeng SL, Liang J, Njanja E, Ma Ntep TM, Spiess A, Rademacher L, Janiak C, Tonle IK.
    ACS Omega; 2022 Jun 14; 7(23):19420-19427. PubMed ID: 35721937
    [Abstract] [Full Text] [Related]

  • 14. Ultrasensitive detection of hydrogen peroxide and dopamine using copolymer-grafted metal-organic framework based electrochemical sensor.
    Hira SA, Nallal M, Rajendran K, Song S, Park S, Lee JM, Joo SH, Park KH.
    Anal Chim Acta; 2020 Jun 29; 1118():26-35. PubMed ID: 32418601
    [Abstract] [Full Text] [Related]

  • 15. In-situ insertion of multi-walled carbon nanotubes in the Fe3O4/N/C composite derived from iron-based metal-organic frameworks as a catalyst for effective sensing acetaminophen and metronidazole.
    Yuan S, Bo X, Guo L.
    Talanta; 2019 Feb 01; 193():100-109. PubMed ID: 30368277
    [Abstract] [Full Text] [Related]

  • 16. Measurement of aflatoxin M1 in powder and pasteurized milk samples by using a label-free electrochemical aptasensor based on platinum nanoparticles loaded on Fe-based metal-organic frameworks.
    Jahangiri-Dehaghani F, Zare HR, Shekari Z.
    Food Chem; 2020 Apr 25; 310():125820. PubMed ID: 31810725
    [Abstract] [Full Text] [Related]

  • 17. Electrochemical sensor based on CuSe for determination of dopamine.
    Umapathi S, Masud J, Coleman H, Nath M.
    Mikrochim Acta; 2020 Jul 11; 187(8):440. PubMed ID: 32653955
    [Abstract] [Full Text] [Related]

  • 18. Electrochemical determination of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous platinum-yttrium and graphene.
    Chen D, Tian C, Li X, Li Z, Han Z, Zhai C, Quan Y, Cui R, Zhang G.
    Mikrochim Acta; 2018 Jan 10; 185(2):98. PubMed ID: 29594422
    [Abstract] [Full Text] [Related]

  • 19. Nitrogen-doped carbon frameworks decorated with palladium nanoparticles for simultaneous electrochemical voltammetric determination of uric acid and dopamine in the presence of ascorbic acid.
    Yao Y, Zhong J, Lu Z, Liu X, Wang Y, Liu T, Zou P, Dai X, Wang X, Ding F, Zhou C, Zhao Q, Rao H.
    Mikrochim Acta; 2019 Nov 16; 186(12):795. PubMed ID: 31734752
    [Abstract] [Full Text] [Related]

  • 20. Improved electrocatalytic activity of Au@Fe3O4 magnetic nanoparticles for sensitive dopamine detection.
    Thamilselvan A, Manivel P, Rajagopal V, Nesakumar N, Suryanarayanan V.
    Colloids Surf B Biointerfaces; 2019 Aug 01; 180():1-8. PubMed ID: 31009905
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.