These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
216 related items for PubMed ID: 32869779
1. Label-free fluorometric detection of microRNA using isothermal rolling circle amplification generating tandem G-quadruplex. Kim M, Kim DM, Kim DE. Analyst; 2020 Sep 14; 145(18):6130-6137. PubMed ID: 32869779 [Abstract] [Full Text] [Related]
2. Fluorometric Detection of Low-Abundance EGFR Exon 19 Deletion Mutation Using Tandem Gene Amplification. Kim DM, Zhang S, Kim M, Kim DE. J Microbiol Biotechnol; 2020 May 28; 30(5):662-667. PubMed ID: 32482931 [Abstract] [Full Text] [Related]
3. Highly sensitive, selective, and rapid detection of miRNA-21 using an RCA/G-quadruplex/QnDESA probing system. Asa TA, Ravi Kumara GS, Seo YJ. Anal Methods; 2022 Jan 06; 14(2):97-100. PubMed ID: 34918721 [Abstract] [Full Text] [Related]
4. A light-up "G-quadruplex nanostring" for label-free and selective detection of miRNA via duplex-specific nuclease mediated tandem rolling circle amplification. Liu LQ, Yin F, Lu Y, Yan XL, Wu CC, Li X, Li C. Nanomedicine; 2021 Feb 06; 32():102339. PubMed ID: 33227538 [Abstract] [Full Text] [Related]
5. Detection of SARS-CoV-2 RNA through tandem isothermal gene amplification without reverse transcription. Lee H, Lee H, Hwang SH, Jeong W, Kim DE. Anal Chim Acta; 2022 Jun 15; 1212():339909. PubMed ID: 35623783 [Abstract] [Full Text] [Related]
6. G-quadruplex fluorescent probe-mediated real-time rolling circle amplification strategy for highly sensitive microRNA detection. Jiang HX, Liang ZZ, Ma YH, Kong DM, Hong ZY. Anal Chim Acta; 2016 Nov 02; 943():114-122. PubMed ID: 27769370 [Abstract] [Full Text] [Related]
7. Fluorometric Detection of SARS-CoV-2 Single-Nucleotide Variant L452R Using Ligation-Based Isothermal Gene Amplification. Kyung K, Ku J, Cho E, Ryu J, Woo J, Jung W, Kim DE. Bioengineering (Basel); 2023 Sep 23; 10(10):. PubMed ID: 37892846 [Abstract] [Full Text] [Related]
8. Label-free fluorometric detection of influenza viral RNA by strand displacement coupled with rolling circle amplification. Lee H, Kim DM, Kim DE. Analyst; 2021 Jan 07; 145(24):8002-8007. PubMed ID: 33410429 [Abstract] [Full Text] [Related]
9. Label-free and highly sensitive APE1 detection based on rolling circle amplification combined with G-quadruplex. Liu B, Yang Z, Huang T, Li MM, Duan W, Xie B, Chen JX, Dai Z, Chen J. Talanta; 2022 Jul 01; 244():123404. PubMed ID: 35349840 [Abstract] [Full Text] [Related]
10. Fluorometric Detection of MicroRNA Using Isothermal Gene Amplification and Graphene Oxide. Hong C, Baek A, Hah SS, Jung W, Kim DE. Anal Chem; 2016 Mar 15; 88(6):2999-3003. PubMed ID: 26902732 [Abstract] [Full Text] [Related]
11. Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs. Tian W, Li P, He W, Liu C, Li Z. Biosens Bioelectron; 2019 Mar 01; 128():17-22. PubMed ID: 30616213 [Abstract] [Full Text] [Related]
12. Strand displacement-triggered G-quadruplex/rolling circle amplification strategy for the ultra-sensitive electrochemical sensing of exosomal microRNAs. Tang X, Wang Y, Zhou L, Zhang W, Yang S, Yu L, Zhao S, Chang K, Chen M. Mikrochim Acta; 2020 Feb 15; 187(3):172. PubMed ID: 32062754 [Abstract] [Full Text] [Related]
13. Label/quencher-free detection of single-nucleotide changes in DNA using isothermal amplification and G-quadruplexes. Lee IJ, Goo NI, Kim DE. Analyst; 2016 Nov 28; 141(24):6503-6506. PubMed ID: 27827492 [Abstract] [Full Text] [Related]
14. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification. Xu H, Zhang Y, Zhang S, Sun M, Li W, Jiang Y, Wu ZS. Anal Chim Acta; 2019 Jan 24; 1047():172-178. PubMed ID: 30567647 [Abstract] [Full Text] [Related]
15. Sensitive fluorescent detection of Listeria monocytogenes by combining a universal asymmetric polymerase chain reaction with rolling circle amplification. Zhan Z, Liu J, Yan L, Aguilar ZP, Xu H. J Pharm Biomed Anal; 2019 May 30; 169():181-187. PubMed ID: 30877929 [Abstract] [Full Text] [Related]
16. Graphene oxide-based fluorometric determination of microRNA-141 using rolling circle amplification and exonuclease III-aided recycling amplification. Li M, Xu X, Cai Q, Luo X, Zhou Z, Xu G, Xie Y. Mikrochim Acta; 2019 Jul 13; 186(8):531. PubMed ID: 31302786 [Abstract] [Full Text] [Related]
17. Label-Free Telomerase Detection in Single Cell Using a Five-Base Telomerase Product-Triggered Exponential Rolling Circle Amplification Strategy. Li X, Cui Y, Du Y, Tang A, Kong D. ACS Sens; 2019 Apr 26; 4(4):1090-1096. PubMed ID: 30945529 [Abstract] [Full Text] [Related]
18. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification. Huang J, Li XY, Du YC, Zhang LN, Liu KK, Zhu LN, Kong DM. Biosens Bioelectron; 2017 May 15; 91():417-423. PubMed ID: 28063390 [Abstract] [Full Text] [Related]
19. A novel label-free cascade amplification strategy based on dumbbell probe-mediated rolling circle amplification-responsive G-quadruplex formation for highly sensitive and selective detection of NAD+ or ATP. Xue Q, Wang L, Jiang W. Chem Commun (Camb); 2013 Apr 04; 49(26):2640-2. PubMed ID: 23431564 [Abstract] [Full Text] [Related]
20. Target binding protection mediated rolling circle amplification for sensitive detection of transcription factors. Zhang K, Wang L, Zhao H, Jiang W. Talanta; 2018 Mar 01; 179():331-336. PubMed ID: 29310240 [Abstract] [Full Text] [Related] Page: [Next] [New Search]