These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
336 related items for PubMed ID: 32870397
1. A signal-on electrochemical aptasensor based on silanized cellulose nanofibers for rapid point-of-use detection of ochratoxin A. El-Moghazy AY, Amaly N, Istamboulie G, Nitin N, Sun G. Mikrochim Acta; 2020 Sep 01; 187(9):535. PubMed ID: 32870397 [Abstract] [Full Text] [Related]
5. Ultrasensitive aptasensor using electrospun MXene/polyvinylidene fluoride nanofiber composite for Ochratoxin A detection. Al-Dhahebi AM, Jose R, Mustapha M, Saheed MSM. Food Chem; 2022 Oct 01; 390():133105. PubMed ID: 35580522 [Abstract] [Full Text] [Related]
6. Ultrasensitive electrochemical detection of ochratoxin A based on signal amplification by one-pot synthesized flower-like PEDOT-AuNFs supported on a graphene oxide sponge. Wang P, Wang L, Ding M, Pei M, Guo W. Analyst; 2019 Oct 07; 144(19):5866-5874. PubMed ID: 31482879 [Abstract] [Full Text] [Related]
7. Ratiometric electrochemical aptasensor for ultrasensitive detection of Ochratoxin A based on a dual signal amplification strategy: Engineering the binding of methylene blue to DNA. Zhu C, Liu D, Li Y, Shen X, Ma S, Liu Y, You T. Biosens Bioelectron; 2020 Feb 15; 150():111814. PubMed ID: 31740254 [Abstract] [Full Text] [Related]
9. Amplified electrochemical antibiotic aptasensing based on electrochemically deposited AuNPs coordinated with PEI-functionalized Fe-based metal-organic framework. Zhang Y, Li B, Wei X, Gu Q, Chen M, Zhang J, Mo S, Wang J, Xue L, Ding Y, Wu Q. Mikrochim Acta; 2021 Aug 04; 188(8):286. PubMed ID: 34345968 [Abstract] [Full Text] [Related]
11. Label free aptasensor for ochratoxin A detection using polythiophene-3-carboxylic acid. Zejli H, Goud KY, Marty JL. Talanta; 2018 Aug 01; 185():513-519. PubMed ID: 29759234 [Abstract] [Full Text] [Related]
12. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Chen W, Yan C, Cheng L, Yao L, Xue F, Xu J. Biosens Bioelectron; 2018 Oct 15; 117():845-851. PubMed ID: 30096739 [Abstract] [Full Text] [Related]
13. Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling. Tong P, Zhang L, Xu JJ, Chen HY. Biosens Bioelectron; 2011 Nov 15; 29(1):97-101. PubMed ID: 21855315 [Abstract] [Full Text] [Related]
14. An Exonuclease I-Assisted Silver-Metallized Electrochemical Aptasensor for Ochratoxin A Detection. Suea-Ngam A, Howes PD, Stanley CE, deMello AJ. ACS Sens; 2019 Jun 28; 4(6):1560-1568. PubMed ID: 31062585 [Abstract] [Full Text] [Related]
15. A Label-free aptasensor based on Aptamer/NH2 Janus particles for ultrasensitive electrochemical detection of Ochratoxin A. Yang YJ, Zhou Y, Xing Y, Zhang GM, Zhang Y, Zhang CH, Lei P, Dong C, Deng X, He Y, Shuang SM. Talanta; 2019 Jul 01; 199():310-316. PubMed ID: 30952263 [Abstract] [Full Text] [Related]
16. The role of band structure in Co- and Fe-co-doped Ba0.5Sr0.5Zr0.1Y0.1O3-δ perovskite semiconductor to design an electrochemical aptasensing platform: application in label-free detection of ochratoxin A using voltammetry. Rauf S, Awan M, Rauf N, Tayyab Z, Ali N, Zhu B, Hayat A, Yang CP. Mikrochim Acta; 2021 Apr 28; 188(5):177. PubMed ID: 33907901 [Abstract] [Full Text] [Related]
19. Electrochemiluminescence Aptasensor Based on Gd(OH)3 Nanocrystalline for Ochratoxin A Detection in Food Samples. Tian C, Wei M, Wang X, Hua Q, Tang F, Zhao L, Zhuang X, Luan F. Biosensors (Basel); 2022 Dec 07; 12(12):. PubMed ID: 36551108 [Abstract] [Full Text] [Related]
20. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. Bonel L, Vidal JC, Duato P, Castillo JR. Biosens Bioelectron; 2011 Mar 15; 26(7):3254-9. PubMed ID: 21256729 [Abstract] [Full Text] [Related] Page: [Next] [New Search]