These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


311 related items for PubMed ID: 32880985

  • 1. Acromelic dysplasias: how rare musculoskeletal disorders reveal biological functions of extracellular matrix proteins.
    Stanley S, Balic Z, Hubmacher D.
    Ann N Y Acad Sci; 2021 Apr; 1490(1):57-76. PubMed ID: 32880985
    [Abstract] [Full Text] [Related]

  • 2. Similarity of geleophysic dysplasia and Weill-Marchesani syndrome.
    Kochhar A, Kirmani S, Cetta F, Younge B, Hyland JC, Michels V.
    Am J Med Genet A; 2013 Dec; 161A(12):3130-2. PubMed ID: 24214363
    [Abstract] [Full Text] [Related]

  • 3. Mutations in LTBP3 cause acromicric dysplasia and geleophysic dysplasia.
    McInerney-Leo AM, Le Goff C, Leo PJ, Kenna TJ, Keith P, Harris JE, Steer R, Bole-Feysot C, Nitschke P, Kielty C, Brown MA, Zankl A, Duncan EL, Cormier-Daire V.
    J Med Genet; 2016 Jul; 53(7):457-64. PubMed ID: 27068007
    [Abstract] [Full Text] [Related]

  • 4. Fibrillin protein pleiotropy: Acromelic dysplasias.
    Sakai LY, Keene DR.
    Matrix Biol; 2019 Jul; 80():6-13. PubMed ID: 30219651
    [Abstract] [Full Text] [Related]

  • 5. A report of three families with FBN1-related acromelic dysplasias and review of literature for genotype-phenotype correlation in geleophysic dysplasia.
    Cheng SW, Luk HM, Chu YWY, Tung YL, Kwan EY, Lo IF, Chung BH.
    Eur J Med Genet; 2018 Apr; 61(4):219-224. PubMed ID: 29191498
    [Abstract] [Full Text] [Related]

  • 6. Limb- and tendon-specific Adamtsl2 deletion identifies a role for ADAMTSL2 in tendon growth in a mouse model for geleophysic dysplasia.
    Hubmacher D, Taye N, Balic Z, Thacker S, Adams SM, Birk DE, Schweitzer R, Apte SS.
    Matrix Biol; 2019 Sep; 82():38-53. PubMed ID: 30738849
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Mutations in the TGFβ binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias.
    Le Goff C, Mahaut C, Wang LW, Allali S, Abhyankar A, Jensen S, Zylberberg L, Collod-Beroud G, Bonnet D, Alanay Y, Brady AF, Cordier MP, Devriendt K, Genevieve D, Kiper PÖ, Kitoh H, Krakow D, Lynch SA, Le Merrer M, Mégarbane A, Mortier G, Odent S, Polak M, Rohrbach M, Sillence D, Stolte-Dijkstra I, Superti-Furga A, Rimoin DL, Topouchian V, Unger S, Zabel B, Bole-Feysot C, Nitschke P, Handford P, Casanova JL, Boileau C, Apte SS, Munnich A, Cormier-Daire V.
    Am J Hum Genet; 2011 Jul 15; 89(1):7-14. PubMed ID: 21683322
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Adamts10 inactivation in mice leads to persistence of ocular microfibrils subsequent to reduced fibrillin-2 cleavage.
    Wang LW, Kutz WE, Mead TJ, Beene LC, Singh S, Jenkins MW, Reinhardt DP, Apte SS.
    Matrix Biol; 2019 Apr 15; 77():117-128. PubMed ID: 30201140
    [Abstract] [Full Text] [Related]

  • 13. The ADAMTS/Fibrillin Connection: Insights into the Biological Functions of ADAMTS10 and ADAMTS17 and Their Respective Sister Proteases.
    Karoulias SZ, Taye N, Stanley S, Hubmacher D.
    Biomolecules; 2020 Apr 12; 10(4):. PubMed ID: 32290605
    [Abstract] [Full Text] [Related]

  • 14. Three novel mutations of the FBN1 gene in Chinese children with acromelic dysplasia.
    Wang Y, Zhang H, Ye J, Han L, Gu X.
    J Hum Genet; 2014 Oct 12; 59(10):563-7. PubMed ID: 25142510
    [Abstract] [Full Text] [Related]

  • 15. Fibrillin-1 mutations causing Weill-Marchesani syndrome and acromicric and geleophysic dysplasias disrupt heparan sulfate interactions.
    Cain SA, McGovern A, Baldwin AK, Baldock C, Kielty CM.
    PLoS One; 2012 Oct 12; 7(11):e48634. PubMed ID: 23133647
    [Abstract] [Full Text] [Related]

  • 16. New insights into the structure, assembly and biological roles of 10-12 nm connective tissue microfibrils from fibrillin-1 studies.
    Jensen SA, Handford PA.
    Biochem J; 2016 Apr 01; 473(7):827-38. PubMed ID: 27026396
    [Abstract] [Full Text] [Related]

  • 17. Microenvironmental regulation by fibrillin-1.
    Sengle G, Tsutsui K, Keene DR, Tufa SF, Carlson EJ, Charbonneau NL, Ono RN, Sasaki T, Wirtz MK, Samples JR, Fessler LI, Fessler JH, Sekiguchi K, Hayflick SJ, Sakai LY.
    PLoS Genet; 2012 Jan 01; 8(1):e1002425. PubMed ID: 22242013
    [Abstract] [Full Text] [Related]

  • 18. A novel ADAMTS17 variant that causes Weill-Marchesani syndrome 4 alters fibrillin-1 and collagen type I deposition in the extracellular matrix.
    Karoulias SZ, Beyens A, Balic Z, Symoens S, Vandersteen A, Rideout AL, Dickinson J, Callewaert B, Hubmacher D.
    Matrix Biol; 2020 Jun 01; 88():1-18. PubMed ID: 31726086
    [Abstract] [Full Text] [Related]

  • 19. SMAD4 mutations causing Myhre syndrome result in disorganization of extracellular matrix improved by losartan.
    Piccolo P, Mithbaokar P, Sabatino V, Tolmie J, Melis D, Schiaffino MC, Filocamo M, Andria G, Brunetti-Pierri N.
    Eur J Hum Genet; 2014 Aug 01; 22(8):988-94. PubMed ID: 24398790
    [Abstract] [Full Text] [Related]

  • 20. The fibrillin microfibril/elastic fibre network: A critical extracellular supramolecular scaffold to balance skin homoeostasis.
    Adamo CS, Zuk AV, Sengle G.
    Exp Dermatol; 2021 Jan 01; 30(1):25-37. PubMed ID: 32920888
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.