These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
118 related items for PubMed ID: 32898436
1. Native aquatic plants for phytoremediation of metals in outdoor experiments: implications of metal accumulation mechanisms, Soran City-Erbil, Iraq. Khalid KM, Ganjo DGA. Int J Phytoremediation; 2021; 23(4):374-386. PubMed ID: 32898436 [Abstract] [Full Text] [Related]
2. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru). Chang Kee J, Gonzales MJ, Ponce O, Ramírez L, León V, Torres A, Corpus M, Loayza-Muro R. Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335 [Abstract] [Full Text] [Related]
3. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India. Mukhopadhyay S, Rana V, Kumar A, Maiti SK. Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831 [Abstract] [Full Text] [Related]
4. Phytoremediation potential of castor (Ricinus communis L.) in the soils of the abandoned copper mine in Northern Oman: implications for arid regions. Palanivel TM, Pracejus B, Victor R. Environ Sci Pollut Res Int; 2020 May; 27(14):17359-17369. PubMed ID: 32157545 [Abstract] [Full Text] [Related]
5. Hyperaccumulator straw improves the cadmium phytoextraction efficiency of emergent plant Nasturtium officinale. Li K, Lin L, Wang J, Xia H, Liang D, Wang X, Liao M, Wang L, Liu L, Chen C, Tang Y. Environ Monit Assess; 2017 Aug; 189(8):374. PubMed ID: 28681323 [Abstract] [Full Text] [Related]
6. Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in situ phytoremediation of industrial waste. Chandra R, Kumar V. Environ Sci Pollut Res Int; 2017 Jan; 24(3):2605-2619. PubMed ID: 27826829 [Abstract] [Full Text] [Related]
11. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus. Chandra R, Yadav S. Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504 [Abstract] [Full Text] [Related]
12. Phytoaccumulation of Heavy Metals in Natural Vegetation at the Municipal Wastewater Site in Abbottabad, Pakistan. Irshad M, Ruqia B, Hussain Z. Int J Phytoremediation; 2015 Jul; 17(12):1269-73. PubMed ID: 26366840 [Abstract] [Full Text] [Related]
13. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Yoon J, Cao X, Zhou Q, Ma LQ. Sci Total Environ; 2006 Sep 15; 368(2-3):456-64. PubMed ID: 16600337 [Abstract] [Full Text] [Related]
15. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals. Cheraghi M, Lorestani B, Khorasani N, Yousefi N, Karami M. Biol Trace Elem Res; 2011 Dec 15; 144(1-3):1133-41. PubMed ID: 19319488 [Abstract] [Full Text] [Related]
16. Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. Singh R, Singh DP, Kumar N, Bhargava SK, Barman SC. J Environ Biol; 2010 Jul 15; 31(4):421-30. PubMed ID: 21186714 [Abstract] [Full Text] [Related]
19. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon. Lum AF, Ngwa ES, Chikoye D, Suh CE. Int J Phytoremediation; 2014 Jul 15; 16(3):302-19. PubMed ID: 24912226 [Abstract] [Full Text] [Related]