These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Osteopontin phosphopeptide mitigates calcium oxalate stone formation in a Drosophila melanogaster model. Akouris PP, Chmiel JA, Stuivenberg GA, Kiattiburut W, Bjazevic J, Razvi H, Grohe B, Goldberg HA, Burton JP, Al KF. Urolithiasis; 2022 Dec 22; 51(1):19. PubMed ID: 36547746 [Abstract] [Full Text] [Related]
3. Hydroxycitric Acid Tripotassium Inhibits Calcium Oxalate Crystal Formation in the Drosophila Melanogaster Model of Hyperoxaluria. Han S, Zhao C, Pokhrel G, Sun X, Chen Z, Xu H. Med Sci Monit; 2019 May 17; 25():3662-3667. PubMed ID: 31099342 [Abstract] [Full Text] [Related]
4. Presence of Oxalobacter formigenes in the intestinal tract is associated with the absence of calcium oxalate urolith formation in dogs. Gnanandarajah JS, Abrahante JE, Lulich JP, Murtaugh MP. Urol Res; 2012 Oct 17; 40(5):467-73. PubMed ID: 22223029 [Abstract] [Full Text] [Related]
5. Lead (Pb2+)-induced calcium oxalate crystallization ex vivo is ameliorated via inositol 1,4,5-trisphosphate receptor (InsP3R) knockdown in a Drosophila melanogaster model of nephrolithiasis. Branco AJ, Vattamparambil AS, Landry GM. Environ Toxicol Pharmacol; 2021 Oct 17; 87():103695. PubMed ID: 34171488 [Abstract] [Full Text] [Related]
6. Toward a new insight of calcium oxalate stones in Drosophila by micro-computerized tomography. Chen WC, Chen HY, Liao PC, Wang SJ, Tsai MY, Chen YH, Lin WY. Urolithiasis; 2018 Apr 17; 46(2):149-155. PubMed ID: 28260226 [Abstract] [Full Text] [Related]
9. Sulfate and thiosulfate inhibit oxalate transport via a dPrestin (Slc26a6)-dependent mechanism in an insect model of calcium oxalate nephrolithiasis. Landry GM, Hirata T, Anderson JB, Cabrero P, Gallo CJ, Dow JA, Romero MF. Am J Physiol Renal Physiol; 2016 Jan 15; 310(2):F152-9. PubMed ID: 26538444 [Abstract] [Full Text] [Related]
11. Comparative faecal microbiota of dogs with and without calcium oxalate stones. Gnanandarajah JS, Johnson TJ, Kim HB, Abrahante JE, Lulich JP, Murtaugh MP. J Appl Microbiol; 2012 Oct 15; 113(4):745-56. PubMed ID: 22788835 [Abstract] [Full Text] [Related]
12. Dual modulatory effects of diosmin on calcium oxalate kidney stone formation processes: Crystallization, growth, aggregation, crystal-cell adhesion, internalization into renal tubular cells, and invasion through extracellular matrix. Khamchun S, Yoodee S, Thongboonkerd V. Biomed Pharmacother; 2021 Sep 15; 141():111903. PubMed ID: 34328112 [Abstract] [Full Text] [Related]
13. Therapeutic effects of probiotics and herbal medications on oxalate nephrolithiasis: a mini systematic review. Taheri H, Feizabadi MM, Keikha R, Afkari R. Iran J Microbiol; 2024 Feb 15; 16(1):4-18. PubMed ID: 38682062 [Abstract] [Full Text] [Related]
14. In vivo Drosophilia genetic model for calcium oxalate nephrolithiasis. Hirata T, Cabrero P, Berkholz DS, Bondeson DP, Ritman EL, Thompson JR, Dow JA, Romero MF. Am J Physiol Renal Physiol; 2012 Dec 01; 303(11):F1555-62. PubMed ID: 22993075 [Abstract] [Full Text] [Related]
15. Vinegar reduced renal calcium oxalate stones by regulating acetate metabolism in gut microbiota and crystal adhesion in rats. Liu Y, Jin X, Ma Y, Sun Q, Li H, Wang K. Int Urol Nephrol; 2022 Oct 01; 54(10):2485-2495. PubMed ID: 35852714 [Abstract] [Full Text] [Related]
18. Unraveling the role of gut microbiota by fecal microbiota transplantation in rat model of kidney stone disease. Hunthai S, Usawachintachit M, Taweevisit M, Srisa-Art M, Anegkamol W, Tosukhowong P, Rattanachaisit P, Chuaypen N, Dissayabutra T. Sci Rep; 2024 Sep 20; 14(1):21924. PubMed ID: 39300177 [Abstract] [Full Text] [Related]
19. Mechanistic Insights into the Antilithiatic Proteins from Terminalia arjuna: A Proteomic Approach in Urolithiasis. Mittal A, Tandon S, Singla SK, Tandon C. PLoS One; 2016 Sep 20; 11(9):e0162600. PubMed ID: 27649531 [Abstract] [Full Text] [Related]
20. Rosiglitazone Suppresses Calcium Oxalate Crystal Binding and Oxalate-Induced Oxidative Stress in Renal Epithelial Cells by Promoting PPAR-γ Activation and Subsequent Regulation of TGF-β1 and HGF Expression. Liu YD, Yu SL, Wang R, Liu JN, Jin YS, Li YF, An RH. Oxid Med Cell Longev; 2019 Sep 20; 2019():4826525. PubMed ID: 31781338 [Abstract] [Full Text] [Related] Page: [Next] [New Search]