These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea. Aziz A, Heyraud A, Lambert B. Planta; 2004 Mar; 218(5):767-74. PubMed ID: 14618326 [Abstract] [Full Text] [Related]
9. Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance. Le Hénanff G, Profizi C, Courteaux B, Rabenoelina F, Gérard C, Clément C, Baillieul F, Cordelier S, Dhondt-Cordelier S. J Exp Bot; 2013 Nov; 64(16):4877-93. PubMed ID: 24043850 [Abstract] [Full Text] [Related]
10. Response of direct or priming defense against Botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries. Wang K, Liao Y, Kan J, Han L, Zheng Y. Int J Food Microbiol; 2015 Feb 02; 194():32-9. PubMed ID: 25461606 [Abstract] [Full Text] [Related]
11. The Effect of Ethylene on the Color Change and Resistance to Botrytis cinerea Infection in 'Kyoho' Grape Fruits. Dong T, Zheng T, Fu W, Guan L, Jia H, Fang J. Foods; 2020 Jul 07; 9(7):. PubMed ID: 32645910 [Abstract] [Full Text] [Related]
12. Analysis of WRKY transcription factors and characterization of two Botrytis cinerea-responsive LrWRKY genes from Lilium regale. Cui Q, Yan X, Gao X, Zhang DM, He HB, Jia GX. Plant Physiol Biochem; 2018 Jun 07; 127():525-536. PubMed ID: 29723824 [Abstract] [Full Text] [Related]
13. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. Chong J, Piron MC, Meyer S, Merdinoglu D, Bertsch C, Mestre P. J Exp Bot; 2014 Dec 07; 65(22):6589-601. PubMed ID: 25246444 [Abstract] [Full Text] [Related]
14. The transcription factors VaERF16 and VaMYB306 interact to enhance resistance of grapevine to Botrytis cinerea infection. Zhu Y, Zhang X, Zhang Q, Chai S, Yin W, Gao M, Li Z, Wang X. Mol Plant Pathol; 2022 Oct 07; 23(10):1415-1432. PubMed ID: 35822262 [Abstract] [Full Text] [Related]
15. Resistance of Malus domestica fruit to Botrytis cinerea depends on endogenous ethylene biosynthesis. Akagi A, Dandekar AM, Stotz HU. Phytopathology; 2011 Nov 07; 101(11):1311-21. PubMed ID: 21809978 [Abstract] [Full Text] [Related]
16. Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea. Hatmi S, Trotel-Aziz P, Villaume S, Couderchet M, Clément C, Aziz A. J Exp Bot; 2014 Jan 07; 65(1):75-88. PubMed ID: 24170740 [Abstract] [Full Text] [Related]
17. Independent Preharvest Applications of Methyl Jasmonate and Chitosan Elicit Differential Upregulation of Defense-Related Genes with Reduced Incidence of Gray Mold Decay during Postharvest Storage of Fragaria chiloensis Fruit. Saavedra GM, Sanfuentes E, Figueroa PM, Figueroa CR. Int J Mol Sci; 2017 Jul 03; 18(7):. PubMed ID: 28671619 [Abstract] [Full Text] [Related]
18. Nonspecific lipid-transfer protein genes expression in grape (Vitis sp.) cells in response to fungal elicitor treatments. Gomès E, Sagot E, Gaillard C, Laquitaine L, Poinssot B, Sanejouand YH, Delrot S, Coutos-Thévenot P. Mol Plant Microbe Interact; 2003 May 03; 16(5):456-64. PubMed ID: 12744517 [Abstract] [Full Text] [Related]
19. Characterization of a multifunctional caffeoyl-CoA O-methyltransferase activated in grape berries upon drought stress. Giordano D, Provenzano S, Ferrandino A, Vitali M, Pagliarani C, Roman F, Cardinale F, Castellarin SD, Schubert A. Plant Physiol Biochem; 2016 Apr 03; 101():23-32. PubMed ID: 26851572 [Abstract] [Full Text] [Related]
20. Jasmonate increases terpene synthase expression, leading to strawberry resistance to Botrytis cinerea infection. Zhang Z, Lu S, Yu W, Ehsan S, Zhang Y, Jia H, Fang J. Plant Cell Rep; 2022 May 03; 41(5):1243-1260. PubMed ID: 35325290 [Abstract] [Full Text] [Related] Page: [Next] [New Search]