These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


305 related items for PubMed ID: 32917908

  • 1. Elucidating the role of metal ions in carbonic anhydrase catalysis.
    Kim JK, Lee C, Lim SW, Adhikari A, Andring JT, McKenna R, Ghim CM, Kim CU.
    Nat Commun; 2020 Sep 11; 11(1):4557. PubMed ID: 32917908
    [Abstract] [Full Text] [Related]

  • 2. Nucleophile recognition as an alternative inhibition mode for benzoic acid based carbonic anhydrase inhibitors.
    Martin DP, Cohen SM.
    Chem Commun (Camb); 2012 May 28; 48(43):5259-61. PubMed ID: 22531842
    [Abstract] [Full Text] [Related]

  • 3. Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic core residues.
    Hunt JA, Ahmed M, Fierke CA.
    Biochemistry; 1999 Jul 13; 38(28):9054-62. PubMed ID: 10413479
    [Abstract] [Full Text] [Related]

  • 4. Structural influence of hydrophobic core residues on metal binding and specificity in carbonic anhydrase II.
    Cox JD, Hunt JA, Compher KM, Fierke CA, Christianson DW.
    Biochemistry; 2000 Nov 14; 39(45):13687-94. PubMed ID: 11076507
    [Abstract] [Full Text] [Related]

  • 5. Histidine --> carboxamide ligand substitutions in the zinc binding site of carbonic anhydrase II alter metal coordination geometry but retain catalytic activity.
    Lesburg CA, Huang C, Christianson DW, Fierke CA.
    Biochemistry; 1997 Dec 16; 36(50):15780-91. PubMed ID: 9398308
    [Abstract] [Full Text] [Related]

  • 6. Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically diminishes catalysis and enhances metal equilibration kinetics in carbonic anhydrase II.
    Huang CC, Lesburg CA, Kiefer LL, Fierke CA, Christianson DW.
    Biochemistry; 1996 Mar 19; 35(11):3439-46. PubMed ID: 8639494
    [Abstract] [Full Text] [Related]

  • 7. Structures of intermediates along the catalytic cycle of terminal deoxynucleotidyltransferase: dynamical aspects of the two-metal ion mechanism.
    Gouge J, Rosario S, Romain F, Beguin P, Delarue M.
    J Mol Biol; 2013 Nov 15; 425(22):4334-52. PubMed ID: 23856622
    [Abstract] [Full Text] [Related]

  • 8. Long-range paramagnetic NMR data can provide a closer look on metal coordination in metalloproteins.
    Cerofolini L, Staderini T, Giuntini S, Ravera E, Fragai M, Parigi G, Pierattelli R, Luchinat C.
    J Biol Inorg Chem; 2018 Jan 15; 23(1):71-80. PubMed ID: 29218635
    [Abstract] [Full Text] [Related]

  • 9. A closer look at the active site of gamma-class carbonic anhydrases: high-resolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila.
    Iverson TM, Alber BE, Kisker C, Ferry JG, Rees DC.
    Biochemistry; 2000 Aug 08; 39(31):9222-31. PubMed ID: 10924115
    [Abstract] [Full Text] [Related]

  • 10. Interplay between Carbonic Anhydrases and Metallothioneins: Structural Control of Metalation.
    Wong DL, Yuan AT, Korkola NC, Stillman MJ.
    Int J Mol Sci; 2020 Aug 09; 21(16):. PubMed ID: 32784815
    [Abstract] [Full Text] [Related]

  • 11. Structural study of interaction between brinzolamide and dorzolamide inhibition of human carbonic anhydrases.
    Pinard MA, Boone CD, Rife BD, Supuran CT, McKenna R.
    Bioorg Med Chem; 2013 Nov 15; 21(22):7210-5. PubMed ID: 24090602
    [Abstract] [Full Text] [Related]

  • 12. Structure of cobalt carbonic anhydrase complexed with bicarbonate.
    Håkansson K, Wehnert A.
    J Mol Biol; 1992 Dec 20; 228(4):1212-8. PubMed ID: 1474587
    [Abstract] [Full Text] [Related]

  • 13. Structural studies of the [tris(imidazolyl)phosphine]metal nitrate complexes [[PimPrl,But]M(NO3)]+ (M = Co, Cu, Zn, Cd, Hg): comparison of nitrate-binding modes in synthetic analogues of carbonic anhydrase.
    Kimblin C, Murphy VJ, Hascall T, Bridgewater BM, Bonanno JB, Parkin G.
    Inorg Chem; 2000 Mar 06; 39(5):967-74. PubMed ID: 12526376
    [Abstract] [Full Text] [Related]

  • 14. Co(II) Substitution Enhances the Esterase Activity of a de Novo Designed Zn(II) Carbonic Anhydrase.
    Borghesani V, Zastrow ML, Tolbert AE, Deb A, Penner-Hahn JE, Pecoraro VL.
    Chemistry; 2024 Apr 25; 30(24):e202304367. PubMed ID: 38377169
    [Abstract] [Full Text] [Related]

  • 15. Comparison of solution and crystal properties of Co(II)-substituted human carbonic anhydrase II.
    Avvaru BS, Arenas DJ, Tu C, Tanner DB, McKenna R, Silverman DN.
    Arch Biochem Biophys; 2010 Oct 01; 502(1):53-9. PubMed ID: 20637176
    [Abstract] [Full Text] [Related]

  • 16. A de novo designed metalloenzyme for the hydration of CO2.
    Cangelosi VM, Deb A, Penner-Hahn JE, Pecoraro VL.
    Angew Chem Int Ed Engl; 2014 Jul 21; 53(30):7900-3. PubMed ID: 24943466
    [Abstract] [Full Text] [Related]

  • 17. Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins.
    Dudev T, Lim C.
    Chem Rev; 2014 Jan 08; 114(1):538-56. PubMed ID: 24040963
    [No Abstract] [Full Text] [Related]

  • 18. Catalysis by metal-activated hydroxide in zinc and manganese metalloenzymes.
    Christianson DW, Cox JD.
    Annu Rev Biochem; 1999 Jan 08; 68():33-57. PubMed ID: 10872443
    [Abstract] [Full Text] [Related]

  • 19. Metal poison inhibition of carbonic anhydrase.
    Lindahl M, Svensson LA, Liljas A.
    Proteins; 1993 Feb 08; 15(2):177-82. PubMed ID: 8441752
    [Abstract] [Full Text] [Related]

  • 20. 5-Substituted-(1,2,3-triazol-4-yl)thiophene-2-sulfonamides strongly inhibit human carbonic anhydrases I, II, IX and XII: solution and X-ray crystallographic studies.
    Leitans J, Sprudza A, Tanc M, Vozny I, Zalubovskis R, Tars K, Supuran CT.
    Bioorg Med Chem; 2013 Sep 01; 21(17):5130-8. PubMed ID: 23859774
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.