These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
205 related items for PubMed ID: 32924934
21. Structural Determinants of Yeast Protein-Protein Interaction Interface Evolution at the Residue Level. Pollet L, Lambourne L, Xia Y. J Mol Biol; 2022 Oct 15; 434(19):167750. PubMed ID: 35850298 [Abstract] [Full Text] [Related]
22. The social and structural architecture of the yeast protein interactome. Michaelis AC, Brunner AD, Zwiebel M, Meier F, Strauss MT, Bludau I, Mann M. Nature; 2023 Dec 15; 624(7990):192-200. PubMed ID: 37968396 [Abstract] [Full Text] [Related]
23. GAIA: a gram-based interaction analysis tool--an approach for identifying interacting domains in yeast. Zhang KX, Ouellette BF. BMC Bioinformatics; 2009 Jan 30; 10 Suppl 1(Suppl 1):S60. PubMed ID: 19208164 [Abstract] [Full Text] [Related]
24. t-LSE: a novel robust geometric approach for modeling protein-protein interaction networks. Zhu L, You ZH, Huang DS, Wang B. PLoS One; 2013 Jan 30; 8(4):e58368. PubMed ID: 23560036 [Abstract] [Full Text] [Related]
25. Visualizing Post-Translational Modifications in Protein Interaction Networks Using PTMOracle. Tay AP, Liang A, Wilkins MR, Pang CNI. Curr Protoc Bioinformatics; 2019 Jun 30; 66(1):e71. PubMed ID: 30653846 [Abstract] [Full Text] [Related]
26. Cross-species protein interactome mapping reveals species-specific wiring of stress response pathways. Das J, Vo TV, Wei X, Mellor JC, Tong V, Degatano AG, Wang X, Wang L, Cordero NA, Kruer-Zerhusen N, Matsuyama A, Pleiss JA, Lipkin SM, Yoshida M, Roth FP, Yu H. Sci Signal; 2013 May 21; 6(276):ra38. PubMed ID: 23695164 [Abstract] [Full Text] [Related]
27. Protein-Protein Interactions Prediction Using a Novel Local Conjoint Triad Descriptor of Amino Acid Sequences. Wang J, Zhang L, Jia L, Ren Y, Yu G. Int J Mol Sci; 2017 Nov 08; 18(11):. PubMed ID: 29117139 [Abstract] [Full Text] [Related]
28. Identifying essential proteins from active PPI networks constructed with dynamic gene expression. Xiao Q, Wang J, Peng X, Wu FX, Pan Y. BMC Genomics; 2015 Nov 08; 16 Suppl 3(Suppl 3):S1. PubMed ID: 25707432 [Abstract] [Full Text] [Related]
29. Removing bias against membrane proteins in interaction networks. Brito GC, Andrews DW. BMC Syst Biol; 2011 Oct 19; 5():169. PubMed ID: 22011625 [Abstract] [Full Text] [Related]
30. In search of the biological significance of modular structures in protein networks. Wang Z, Zhang J. PLoS Comput Biol; 2007 Jun 19; 3(6):e107. PubMed ID: 17542644 [Abstract] [Full Text] [Related]
31. Yeast Protein Interactome topology provides framework for coordinated-functionality. Valente AX, Cusick ME. Nucleic Acids Res; 2006 Jun 19; 34(9):2812-9. PubMed ID: 16717286 [Abstract] [Full Text] [Related]
32. A novel extended Pareto Optimality Consensus model for predicting essential proteins. Li G, Li M, Peng W, Li Y, Pan Y, Wang J. J Theor Biol; 2019 Nov 07; 480():141-149. PubMed ID: 31398315 [Abstract] [Full Text] [Related]
33. A yeast two-hybrid system for the screening and characterization of small-molecule inhibitors of protein-protein interactions identifies a novel putative Mdm2-binding site in p53. Wong JH, Alfatah M, Sin MF, Sim HM, Verma CS, Lane DP, Arumugam P. BMC Biol; 2017 Nov 09; 15(1):108. PubMed ID: 29121928 [Abstract] [Full Text] [Related]
34. Comparison of path-based centrality measures in protein-protein interaction networks revealed proteins with phenotypic relevance during adaptation to changing nitrogen environments. Gilbert M, Li Z, Wu XN, Rohr L, Gombos S, Harter K, Schulze WX. J Proteomics; 2021 Mar 20; 235():104114. PubMed ID: 33453437 [Abstract] [Full Text] [Related]
35. Visualization and analysis of the complexome network of Saccharomyces cerevisiae. Li SS, Xu K, Wilkins MR. J Proteome Res; 2011 Oct 07; 10(10):4744-56. PubMed ID: 21842913 [Abstract] [Full Text] [Related]
36. Protein-fragment complementation assays for large-scale analysis, functional dissection and dynamic studies of protein-protein interactions in living cells. Michnick SW, Ear PH, Landry C, Malleshaiah MK, Messier V. Methods Mol Biol; 2011 Oct 07; 756():395-425. PubMed ID: 21870242 [Abstract] [Full Text] [Related]
37. Assembling a protein-protein interaction map of the SSU processome from existing datasets. Lim YH, Charette JM, Baserga SJ. PLoS One; 2011 Mar 10; 6(3):e17701. PubMed ID: 21423703 [Abstract] [Full Text] [Related]
38. Rewiring of the protein-protein-metabolite interactome during the diauxic shift in yeast. Schlossarek D, Luzarowski M, Sokołowska EM, Thirumalaikumar VP, Dengler L, Willmitzer L, Ewald JC, Skirycz A. Cell Mol Life Sci; 2022 Oct 15; 79(11):550. PubMed ID: 36242648 [Abstract] [Full Text] [Related]
39. Protein context shapes the specificity of SH3 domain-mediated interactions in vivo. Dionne U, Bourgault É, Dubé AK, Bradley D, Chartier FJM, Dandage R, Dibyachintan S, Després PC, Gish GD, Pham NTH, Létourneau M, Lambert JP, Doucet N, Bisson N, Landry CR. Nat Commun; 2021 Mar 12; 12(1):1597. PubMed ID: 33712617 [Abstract] [Full Text] [Related]
40. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators. Padi M, Quackenbush J. BMC Syst Biol; 2015 Nov 14; 9():80. PubMed ID: 26576632 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]