These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 32929953

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Quantum-Dot Tandem Solar Cells Based on a Solution-Processed Nanoparticle Intermediate Layer.
    Hu L, Wang Y, Shivarudraiah SB, Yuan J, Guan X, Geng X, Younis A, Hu Y, Huang S, Wu T, Halpert JE.
    ACS Appl Mater Interfaces; 2020 Jan 15; 12(2):2313-2318. PubMed ID: 31840973
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells.
    Biondi M, Choi MJ, Ouellette O, Baek SW, Todorović P, Sun B, Lee S, Wei M, Li P, Kirmani AR, Sagar LK, Richter LJ, Hoogland S, Lu ZH, García de Arquer FP, Sargent EH.
    Adv Mater; 2020 Apr 15; 32(17):e1906199. PubMed ID: 32196136
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation.
    Lan X, Voznyy O, García de Arquer FP, Liu M, Xu J, Proppe AH, Walters G, Fan F, Tan H, Liu M, Yang Z, Hoogland S, Sargent EH.
    Nano Lett; 2016 Jul 13; 16(7):4630-4. PubMed ID: 27351104
    [Abstract] [Full Text] [Related]

  • 8. Stabilizing Surface Passivation Enables Stable Operation of Colloidal Quantum Dot Photovoltaic Devices at Maximum Power Point in an Air Ambient.
    Choi J, Choi MJ, Kim J, Dinic F, Todorovic P, Sun B, Wei M, Baek SW, Hoogland S, García de Arquer FP, Voznyy O, Sargent EH.
    Adv Mater; 2020 Feb 13; 32(7):e1906497. PubMed ID: 31930771
    [Abstract] [Full Text] [Related]

  • 9. Quantum Dot-Siloxane Anchoring on Colloidal Quantum Dot Film for Flexible Photovoltaic Cell.
    Kim C, Kozakci I, Lee SY, Kim B, Kim J, Lee J, Ma BS, Oh ES, Kim TS, Lee JY.
    Small; 2023 Oct 13; 19(41):e2302195. PubMed ID: 37300352
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Merging Passivation in Synthesis Enabling the Lowest Open-Circuit Voltage Loss for PbS Quantum Dot Solar Cells.
    Liu Y, Wu H, Shi G, Li Y, Gao Y, Fang S, Tang H, Chen W, Ma T, Khan I, Wang K, Wang C, Li X, Shen Q, Liu Z, Ma W.
    Adv Mater; 2023 Feb 13; 35(5):e2207293. PubMed ID: 36380715
    [Abstract] [Full Text] [Related]

  • 12. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.
    Wang H, Wang Y, He B, Li W, Sulaman M, Xu J, Yang S, Tang Y, Zou B.
    ACS Appl Mater Interfaces; 2016 Jul 20; 8(28):18526-33. PubMed ID: 27176547
    [Abstract] [Full Text] [Related]

  • 13. Colloidal PbS Quantum Dot Photodiode Imager with Suppressed Dark Current.
    Wang Y, Hu H, Yuan M, Xia H, Zhang X, Liu J, Yang J, Xu S, Shi Z, He J, Zhang J, Gao L, Tang J, Lan X.
    ACS Appl Mater Interfaces; 2023 Dec 20; 15(50):58573-58582. PubMed ID: 38059485
    [Abstract] [Full Text] [Related]

  • 14. A low-temperature solution-processed indium incorporated zinc oxide electron transport layer for high-efficiency lead sulfide colloidal quantum dot solar cells.
    Bashir R, Bilal MK, Bashir A, Zhao J, Asif SU, Ahmad W, Xie J, Hu W.
    Nanoscale; 2021 Aug 14; 13(30):12991-12999. PubMed ID: 34477782
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Hole transport layer selection toward efficient colloidal PbS quantum dot solar cells.
    Yang G, Zhu Y, Huang J, Xu X, Cui S, Lu Z.
    Opt Express; 2019 Sep 30; 27(20):A1338-A1349. PubMed ID: 31684491
    [Abstract] [Full Text] [Related]

  • 18. Optimizing Surface Chemistry of PbS Colloidal Quantum Dot for Highly Efficient and Stable Solar Cells via Chemical Binding.
    Hu L, Lei Q, Guan X, Patterson R, Yuan J, Lin CH, Kim J, Geng X, Younis A, Wu X, Liu X, Wan T, Chu D, Wu T, Huang S.
    Adv Sci (Weinh); 2021 Jan 30; 8(2):2003138. PubMed ID: 33511019
    [Abstract] [Full Text] [Related]

  • 19. Efficient PbSe Colloidal Quantum Dot Solar Cells Using SnO2 as a Buffer Layer.
    Zhu M, Liu X, Liu S, Chen C, He J, Liu W, Yang J, Gao L, Niu G, Tang J, Zhang J.
    ACS Appl Mater Interfaces; 2020 Jan 15; 12(2):2566-2571. PubMed ID: 31854183
    [Abstract] [Full Text] [Related]

  • 20. Influence of Multistep Surface Passivation on the Performance of PbS Colloidal Quantum Dot Solar Cells.
    Clark PCJ, Neo DCJ, Ahumada-Lazo R, Williamson AI, Pis I, Nappini S, Watt AAR, Flavell WR.
    Langmuir; 2018 Jul 31; 34(30):8887-8897. PubMed ID: 29975548
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.