These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A MYB gene from wheat (Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes. Rahaie M, Xue GP, Naghavi MR, Alizadeh H, Schenk PM. Plant Cell Rep; 2010 Aug; 29(8):835-44. PubMed ID: 20490502 [Abstract] [Full Text] [Related]
4. Transcriptome analysis of bread wheat leaves in response to salt stress. Amirbakhtiar N, Ismaili A, Ghaffari MR, Mirdar Mansuri R, Sanjari S, Shobbar ZS. PLoS One; 2021 Aug; 16(7):e0254189. PubMed ID: 34242309 [Abstract] [Full Text] [Related]
6. TaZFP1, a C2H2 type-ZFP gene of T. aestivum, mediates salt stress tolerance of plants by modulating diverse stress-defensive physiological processes. Sun B, Zhao Y, Shi S, Yang M, Xiao K. Plant Physiol Biochem; 2019 Mar; 136():127-142. PubMed ID: 30665058 [Abstract] [Full Text] [Related]
7. Expression profiling of TaARGOS homoeologous drought responsive genes in bread wheat. Ahmed K, Shabbir G, Ahmed M, Noor S, Mohi Ud Din A, Qamar M, Rehman N. Sci Rep; 2022 Mar 04; 12(1):3595. PubMed ID: 35246579 [Abstract] [Full Text] [Related]
10. Induced defence responses of contrasting bread wheat genotypes under differential salt stress imposition. Singh A, Bhushan B, Gaikwad K, Yadav OP, Kumar S, Rai RD. Indian J Biochem Biophys; 2015 Feb 04; 52(1):75-85. PubMed ID: 26040114 [Abstract] [Full Text] [Related]
11. Mapping QTL for agronomic traits under two levels of salt stress in a new constructed RIL wheat population. Luo Q, Zheng Q, Hu P, Liu L, Yang G, Li H, Li B, Li Z. Theor Appl Genet; 2021 Jan 04; 134(1):171-189. PubMed ID: 32995899 [Abstract] [Full Text] [Related]
12. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway. Yang T, Yao S, Hao L, Zhao Y, Lu W, Xiao K. Plant Cell Rep; 2016 Nov 04; 35(11):2309-2323. PubMed ID: 27541276 [Abstract] [Full Text] [Related]
13. A transcriptomic analysis reveals the nature of salinity tolerance of a wheat introgression line. Liu C, Li S, Wang M, Xia G. Plant Mol Biol; 2012 Jan 04; 78(1-2):159-69. PubMed ID: 22089973 [Abstract] [Full Text] [Related]
14. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. Shi P, Gu M. BMC Plant Biol; 2020 Dec 30; 20(1):568. PubMed ID: 33380327 [Abstract] [Full Text] [Related]
15. Genetic and transcriptional variations in NRAMP-2 and OPAQUE1 genes are associated with salt stress response in wheat. Oyiga BC, Ogbonnaya FC, Sharma RC, Baum M, Léon J, Ballvora A. Theor Appl Genet; 2019 Feb 30; 132(2):323-346. PubMed ID: 30392081 [Abstract] [Full Text] [Related]
16. Unraveling wheat's response to salt stress during early growth stages through transcriptomic analysis and co-expression network profiling. Wang W, Huang S, Wang Z, Cao P, Luo M, Wang F. BMC Genom Data; 2024 Apr 12; 25(1):36. PubMed ID: 38609855 [Abstract] [Full Text] [Related]
17. Genetic insights into natural variation underlying salt tolerance in wheat. Li L, Peng Z, Mao X, Wang J, Li C, Chang X, Jing R. J Exp Bot; 2021 Feb 24; 72(4):1135-1150. PubMed ID: 33130904 [Abstract] [Full Text] [Related]
18. Validation of a QTL on Chromosome 1DS Showing a Major Effect on Salt Tolerance in Winter Wheat. Mohamed M, Siddiqui MN, Oyiga BC, Léon J, Ballvora A. Int J Mol Sci; 2022 Nov 08; 23(22):. PubMed ID: 36430224 [Abstract] [Full Text] [Related]
20. Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. Peng Z, He S, Gong W, Sun J, Pan Z, Xu F, Lu Y, Du X. BMC Genomics; 2014 Sep 05; 15(1):760. PubMed ID: 25189468 [Abstract] [Full Text] [Related] Page: [Next] [New Search]