These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
173 related items for PubMed ID: 32942355
1. Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: Modeling, analysis, and elements. Chai Z, Shi B. Phys Rev E; 2020 Aug; 102(2-1):023306. PubMed ID: 32942355 [Abstract] [Full Text] [Related]
2. Rectangular multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: General equilibrium and some important issues. Chai Z, Yuan X, Shi B. Phys Rev E; 2023 Jul; 108(1-2):015304. PubMed ID: 37583231 [Abstract] [Full Text] [Related]
3. Fourth-order multiple-relaxation-time lattice Boltzmann model and equivalent finite-difference scheme for one-dimensional convection-diffusion equations. Chen Y, Chai Z, Shi B. Phys Rev E; 2023 May; 107(5-2):055305. PubMed ID: 37329033 [Abstract] [Full Text] [Related]
4. Macroscopic finite-difference scheme and modified equations of the general propagation multiple-relaxation-time lattice Boltzmann model. Chen Y, Liu X, Chai Z, Shi B. Phys Rev E; 2024 Jun; 109(6-2):065305. PubMed ID: 39021022 [Abstract] [Full Text] [Related]
5. Multiple-distribution-function lattice Boltzmann method for convection-diffusion-system-based incompressible Navier-Stokes equations. Chai Z, Shi B, Zhan C. Phys Rev E; 2022 Nov; 106(5-2):055305. PubMed ID: 36559463 [Abstract] [Full Text] [Related]
6. Discrete unified gas kinetic scheme for nonlinear convection-diffusion equations. Shang J, Chai Z, Wang H, Shi B. Phys Rev E; 2020 Feb; 101(2-1):023306. PubMed ID: 32168639 [Abstract] [Full Text] [Related]
7. Regularized lattice Boltzmann model for a class of convection-diffusion equations. Wang L, Shi B, Chai Z. Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043311. PubMed ID: 26565368 [Abstract] [Full Text] [Related]
8. Maxwell-Stefan-theory-based lattice Boltzmann model for diffusion in multicomponent mixtures. Chai Z, Guo X, Wang L, Shi B. Phys Rev E; 2019 Feb; 99(2-1):023312. PubMed ID: 30934308 [Abstract] [Full Text] [Related]
9. Multiple-relaxation-time lattice Boltzmann simulation for flow, mass transfer, and adsorption in porous media. Ma Q, Chen Z, Liu H. Phys Rev E; 2017 Jul; 96(1-1):013313. PubMed ID: 29347115 [Abstract] [Full Text] [Related]
10. Multiple-relaxation-time finite-difference lattice Boltzmann model for the nonlinear convection-diffusion equation. Chen X, Chai Z, Shang J, Shi B. Phys Rev E; 2021 Sep; 104(3-2):035308. PubMed ID: 34654116 [Abstract] [Full Text] [Related]
11. Nonequilibrium scheme for computing the flux of the convection-diffusion equation in the framework of the lattice Boltzmann method. Chai Z, Zhao TS. Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013305. PubMed ID: 25122408 [Abstract] [Full Text] [Related]
12. Generalized modification in the lattice Bhatnagar-Gross-Krook model for incompressible Navier-Stokes equations and convection-diffusion equations. Yang X, Shi B, Chai Z. Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013309. PubMed ID: 25122412 [Abstract] [Full Text] [Related]
13. Maxwell iteration for the lattice Boltzmann method with diffusive scaling. Zhao W, Yong WA. Phys Rev E; 2017 Mar; 95(3-1):033311. PubMed ID: 28415298 [Abstract] [Full Text] [Related]
14. Theory of the Lattice Boltzmann method: Derivation of macroscopic equations via the Maxwell iteration. Yong WA, Zhao W, Luo LS. Phys Rev E; 2016 Mar; 93(3):033310. PubMed ID: 27078487 [Abstract] [Full Text] [Related]
15. Improved phase-field-based lattice Boltzmann method for thermocapillary flow. Yue L, Chai Z, Wang H, Shi B. Phys Rev E; 2022 Jan; 105(1-2):015314. PubMed ID: 35193195 [Abstract] [Full Text] [Related]
16. Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations. Luo LS, Liao W, Chen X, Peng Y, Zhang W. Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056710. PubMed ID: 21728696 [Abstract] [Full Text] [Related]
17. Asymptotic equivalence of forcing terms in the lattice Boltzmann method within second-order accuracy. Suzuki K, Inamuro T, Yoshino M. Phys Rev E; 2020 Jul; 102(1-1):013308. PubMed ID: 32794911 [Abstract] [Full Text] [Related]
18. Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio. Ba Y, Liu H, Li Q, Kang Q, Sun J. Phys Rev E; 2016 Aug; 94(2-1):023310. PubMed ID: 27627415 [Abstract] [Full Text] [Related]
19. Lattice Boltzmann model capable of mesoscopic vorticity computation. Peng C, Guo Z, Wang LP. Phys Rev E; 2017 Nov; 96(5-1):053304. PubMed ID: 29347733 [Abstract] [Full Text] [Related]
20. Discrete effect on the halfway bounce-back boundary condition of multiple-relaxation-time lattice Boltzmann model for convection-diffusion equations. Cui S, Hong N, Shi B, Chai Z. Phys Rev E; 2016 Apr; 93():043311. PubMed ID: 27176432 [Abstract] [Full Text] [Related] Page: [Next] [New Search]