These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


121 related items for PubMed ID: 32951824

  • 1. Structure and function relationships of sugar oxidases and their potential use in biocatalysis.
    Sriwaiyaphram K, Punthong P, Sucharitakul J, Wongnate T.
    Enzymes; 2020; 47():193-230. PubMed ID: 32951824
    [Abstract] [Full Text] [Related]

  • 2. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.
    Wongnate T, Chaiyen P.
    FEBS J; 2013 Jul; 280(13):3009-27. PubMed ID: 23578136
    [Abstract] [Full Text] [Related]

  • 3. Structure-based redesign of cofactor binding in putrescine oxidase.
    Kopacz MM, Rovida S, van Duijn E, Fraaije MW, Mattevi A.
    Biochemistry; 2011 May 17; 50(19):4209-17. PubMed ID: 21486042
    [Abstract] [Full Text] [Related]

  • 4. The multipurpose family of flavoprotein oxidases.
    Martin C, Binda C, Fraaije MW, Mattevi A.
    Enzymes; 2020 May 17; 47():63-86. PubMed ID: 32951835
    [Abstract] [Full Text] [Related]

  • 5. Identification of a catalytic base for sugar oxidation in the pyranose 2-oxidase reaction.
    Wongnate T, Sucharitakul J, Chaiyen P.
    Chembiochem; 2011 Nov 25; 12(17):2577-86. PubMed ID: 22012709
    [Abstract] [Full Text] [Related]

  • 6. Fungal pyranose oxidases: occurrence, properties and biotechnical applications in carbohydrate chemistry.
    Giffhorn F.
    Appl Microbiol Biotechnol; 2000 Dec 25; 54(6):727-40. PubMed ID: 11152063
    [Abstract] [Full Text] [Related]

  • 7. The vast repertoire of carbohydrate oxidases: An overview.
    Savino S, Fraaije MW.
    Biotechnol Adv; 2021 Nov 01; 51():107634. PubMed ID: 32961251
    [Abstract] [Full Text] [Related]

  • 8. Biochemical Characterization of Pyranose Oxidase from Streptomyces canus-Towards a Better Understanding of Pyranose Oxidase Homologues in Bacteria.
    Kostelac A, Sützl L, Puc J, Furlanetto V, Divne C, Haltrich D.
    Int J Mol Sci; 2022 Nov 06; 23(21):. PubMed ID: 36362382
    [Abstract] [Full Text] [Related]

  • 9. The 1.6 Å crystal structure of pyranose dehydrogenase from Agaricus meleagris rationalizes substrate specificity and reveals a flavin intermediate.
    Tan TC, Spadiut O, Wongnate T, Sucharitakul J, Krondorfer I, Sygmund C, Haltrich D, Chaiyen P, Peterbauer CK, Divne C.
    PLoS One; 2013 Nov 06; 8(1):e53567. PubMed ID: 23326459
    [Abstract] [Full Text] [Related]

  • 10. Structure of the flavocoenzyme of two homologous amine oxidases: monomeric sarcosine oxidase and N-methyltryptophan oxidase.
    Wagner MA, Khanna P, Jorns MS.
    Biochemistry; 1999 Apr 27; 38(17):5588-95. PubMed ID: 10220347
    [Abstract] [Full Text] [Related]

  • 11. Deflavination of flavo-oxidases by nucleophilic reagents.
    Zlateva T, Boteva R, Filippi B, Veenhuis M, van der Klei IJ.
    Biochim Biophys Acta; 2001 Aug 13; 1548(2):213-9. PubMed ID: 11513966
    [Abstract] [Full Text] [Related]

  • 12. Pyranose dehydrogenases: Rare enzymes for electrochemistry and biocatalysis.
    Peterbauer CK.
    Bioelectrochemistry; 2020 Apr 13; 132():107399. PubMed ID: 31835110
    [Abstract] [Full Text] [Related]

  • 13. Characterization of Two VAO-Type Flavoprotein Oxidases from Myceliophthora thermophila.
    Ferrari AR, Rozeboom HJ, Vugts ASC, Koetsier MJ, Floor R, Fraaije MW.
    Molecules; 2018 Jan 05; 23(1):. PubMed ID: 29303991
    [Abstract] [Full Text] [Related]

  • 14. Mechanistic Characterization of Escherichia coli l-Aspartate Oxidase from Kinetic Isotope Effects.
    Chow C, Hegde S, Blanchard JS.
    Biochemistry; 2017 Aug 08; 56(31):4044-4052. PubMed ID: 28700220
    [Abstract] [Full Text] [Related]

  • 15. Pyranose dehydrogenases: biochemical features and perspectives of technological applications.
    Peterbauer CK, Volc J.
    Appl Microbiol Biotechnol; 2010 Jan 08; 85(4):837-48. PubMed ID: 19768457
    [Abstract] [Full Text] [Related]

  • 16. Enzyme-Mediated Conversion of Flavin Adenine Dinucleotide (FAD) to 8-Formyl FAD in Formate Oxidase Results in a Modified Cofactor with Enhanced Catalytic Properties.
    Robbins JM, Souffrant MG, Hamelberg D, Gadda G, Bommarius AS.
    Biochemistry; 2017 Jul 25; 56(29):3800-3807. PubMed ID: 28640638
    [Abstract] [Full Text] [Related]

  • 17. Production of Hydroxy Acids: Selective Double Oxidation of Diols by Flavoprotein Alcohol Oxidase.
    Martin C, Trajkovic M, Fraaije MW.
    Angew Chem Int Ed Engl; 2020 Mar 16; 59(12):4869-4872. PubMed ID: 31912947
    [Abstract] [Full Text] [Related]

  • 18. The family of sarcosine oxidases: Same reaction, different products.
    Lahham M, Jha S, Goj D, Macheroux P, Wallner S.
    Arch Biochem Biophys; 2021 Jun 15; 704():108868. PubMed ID: 33812916
    [Abstract] [Full Text] [Related]

  • 19. Structure of a baculovirus sulfhydryl oxidase, a highly divergent member of the erv flavoenzyme family.
    Hakim M, Mandelbaum A, Fass D.
    J Virol; 2011 Sep 15; 85(18):9406-13. PubMed ID: 21752922
    [Abstract] [Full Text] [Related]

  • 20. From fundamentals to applications of bioelectrocatalysis: bioelectrocatalytic reactions of FAD-dependent glucose dehydrogenase and bilirubin oxidase.
    Tsujimura S.
    Biosci Biotechnol Biochem; 2019 Jan 15; 83(1):39-48. PubMed ID: 30274547
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.