These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
287 related items for PubMed ID: 32957490
21. Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters. Jang EP, Han CY, Lim SW, Jo JH, Jo DY, Lee SH, Yoon SY, Yang H. ACS Appl Mater Interfaces; 2019 Dec 11; 11(49):46062-46069. PubMed ID: 31746194 [Abstract] [Full Text] [Related]
22. The influence of selected ω-mercaptocarboxylate ligands on physicochemical properties and biological activity of Cd-free, zinc‑copper‑indium sulfide colloidal nanocrystals. Kalinowska D, Drozd M, Grabowska-Jadach I, Pietrzak M, Dybko A, Malinowska E, Brzózka Z. Mater Sci Eng C Mater Biol Appl; 2019 Apr 11; 97():583-592. PubMed ID: 30678945 [Abstract] [Full Text] [Related]
23. Fabrication of core-shell-type copper indium selenide and zinc selenide composite quantum dots and their optical properties. Omata T, Nosel K, Otsuka-Yao-Matsuo S. J Nanosci Nanotechnol; 2011 Jun 11; 11(6):4815-23. PubMed ID: 21770109 [Abstract] [Full Text] [Related]
24. Highly Photoluminescent and Stable Aqueous ZnS Quantum Dots. Li H, Shih WY, Shih WH. Ind Eng Chem Res; 2010 Jun 11; 49(2):579-582. PubMed ID: 21954321 [Abstract] [Full Text] [Related]
25. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation. Lim M, Lee W, Bang G, Lee WJ, Park Y, Kwon Y, Jung Y, Kim S, Bang J. Nanoscale; 2019 May 30; 11(21):10463-10471. PubMed ID: 31112192 [Abstract] [Full Text] [Related]
26. Chemical Structure, Ensemble and Single-Particle Spectroscopy of Thick-Shell InP-ZnSe Quantum Dots. Reid KR, McBride JR, Freymeyer NJ, Thal LB, Rosenthal SJ. Nano Lett; 2018 Feb 14; 18(2):709-716. PubMed ID: 29282985 [Abstract] [Full Text] [Related]
27. Surface-engineered quantum dots for the labeling of hydrophobic microdomains in bacterial biofilms. Aldeek F, Mustin C, Balan L, Roques-Carmes T, Fontaine-Aupart MP, Schneider R. Biomaterials; 2011 Aug 14; 32(23):5459-70. PubMed ID: 21549423 [Abstract] [Full Text] [Related]
28. Shell thickness effects on quantum dot brightness and energy transfer. Chern M, Nguyen TT, Mahler AH, Dennis AM. Nanoscale; 2017 Nov 02; 9(42):16446-16458. PubMed ID: 29063928 [Abstract] [Full Text] [Related]
30. Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging. Lai PY, Huang CC, Chou TH, Ou KL, Chang JY. Acta Biomater; 2017 Mar 01; 50():522-533. PubMed ID: 27998812 [Abstract] [Full Text] [Related]
31. Zero reduction luminescence of aqueous-phase alloy core/shell quantum dots via rapid ambient-condition ligand exchange. Le TH, Kim S, Chae S, Choi Y, Park CS, Heo E, Lee U, Kim H, Kwon OS, Im WB, Yoon H. J Colloid Interface Sci; 2020 Mar 22; 564():88-98. PubMed ID: 31911231 [Abstract] [Full Text] [Related]
32. Water-based route to colloidal Mn-doped ZnSe and core/shell ZnSe/ZnS quantum dots. Aboulaich A, Geszke M, Balan L, Ghanbaja J, Medjahdi G, Schneider R. Inorg Chem; 2010 Dec 06; 49(23):10940-8. PubMed ID: 21049903 [Abstract] [Full Text] [Related]
33. Semitransparent quantum dot light-emitting diodes by cadmium-free colloidal quantum dots. Kim Y, Ippen C, Greco T, Oh MS, Chul JH, Lee J, Wedel A, Kim J. J Nanosci Nanotechnol; 2014 Nov 06; 14(11):8636-40. PubMed ID: 25958576 [Abstract] [Full Text] [Related]
34. Extending the Near-Infrared Emission Range of Indium Phosphide Quantum Dots for Multiplexed In Vivo Imaging. Saeboe AM, Nikiforov AY, Toufanian R, Kays JC, Chern M, Casas JP, Han K, Piryatinski A, Jones D, Dennis AM. Nano Lett; 2021 Apr 14; 21(7):3271-3279. PubMed ID: 33755481 [Abstract] [Full Text] [Related]
35. A Water-Free In Situ HF Treatment for Ultrabright InP Quantum Dots. Ubbink RF, Almeida G, Iziyi H, du Fossé I, Verkleij R, Ganapathy S, van Eck ERH, Houtepen AJ. Chem Mater; 2022 Nov 22; 34(22):10093-10103. PubMed ID: 36439318 [Abstract] [Full Text] [Related]
36. Aqueous synthesis of CdTe/CdS/ZnS quantum dots and their optical and chemical properties. Li Z, Dong C, Tang L, Zhu X, Chen H, Ren J. Luminescence; 2011 Nov 22; 26(6):439-48. PubMed ID: 20878652 [Abstract] [Full Text] [Related]
37. Effect of shell layers on luminescence of colloidal CdSe/Zn(0.5)Cd(0.5)Se/ZnSe/ZnS core/multishell quantum dots. Zhang H, Chen D, Zhang J, Wang Z, Cui Y, Shen L. J Nanosci Nanotechnol; 2010 Nov 22; 10(11):7587-91. PubMed ID: 21137988 [Abstract] [Full Text] [Related]
38. Water-based route to ligand-selective synthesis of ZnSe and Cd-doped ZnSe quantum dots with tunable ultraviolet A to blue photoluminescence. Deng Z, Lie FL, Shen S, Ghosh I, Mansuripur M, Muscat AJ. Langmuir; 2009 Jan 06; 25(1):434-42. PubMed ID: 19053829 [Abstract] [Full Text] [Related]
39. Increasing the Energy Gap between Band-Edge and Trap States Slows Down Picosecond Carrier Trapping in Highly Luminescent InP/ZnSe/ZnS Quantum Dots. Sung YM, Kim TG, Yun DJ, Lim M, Ko DS, Jung C, Won N, Park S, Jeon WS, Lee HS, Kim JH, Jun S, Sul S, Hwang S. Small; 2021 Dec 06; 17(52):e2102792. PubMed ID: 34636144 [Abstract] [Full Text] [Related]
40. Flexible Memristive Devices Based on InP/ZnSe/ZnS Core-Multishell Quantum Dot Nanocomposites. Kim DH, Wu C, Park DH, Kim WK, Seo HW, Kim SW, Kim TW. ACS Appl Mater Interfaces; 2018 May 02; 10(17):14843-14849. PubMed ID: 29631394 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]