These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
184 related items for PubMed ID: 32960291
1. Construction of lactic acid-tolerant Saccharomyces cerevisiae by using CRISPR-Cas-mediated genome evolution for efficient D-lactic acid production. Mitsui R, Yamada R, Matsumoto T, Yoshihara S, Tokumoto H, Ogino H. Appl Microbiol Biotechnol; 2020 Nov; 104(21):9147-9158. PubMed ID: 32960291 [Abstract] [Full Text] [Related]
2. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Baek SH, Kwon EY, Kim YH, Hahn JS. Appl Microbiol Biotechnol; 2016 Mar; 100(6):2737-48. PubMed ID: 26596574 [Abstract] [Full Text] [Related]
3. Metabolic Engineering and Adaptive Evolution for Efficient Production of l-Lactic Acid in Saccharomyces cerevisiae. Zhu P, Luo R, Li Y, Chen X. Microbiol Spectr; 2022 Dec 21; 10(6):e0227722. PubMed ID: 36354322 [Abstract] [Full Text] [Related]
4. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering. Baek SH, Kwon EY, Bae SJ, Cho BR, Kim SY, Hahn JS. Biotechnol J; 2017 Oct 21; 12(10):. PubMed ID: 28731533 [Abstract] [Full Text] [Related]
5. D-lactic acid production by metabolically engineered Saccharomyces cerevisiae. Ishida N, Suzuki T, Tokuhiro K, Nagamori E, Onishi T, Saitoh S, Kitamoto K, Takahashi H. J Biosci Bioeng; 2006 Feb 21; 101(2):172-7. PubMed ID: 16569615 [Abstract] [Full Text] [Related]
6. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Novy V, Brunner B, Müller G, Nidetzky B. Biotechnol Bioeng; 2017 Jan 21; 114(1):163-171. PubMed ID: 27426989 [Abstract] [Full Text] [Related]
7. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway. Yamada R, Wakita K, Mitsui R, Ogino H. Biotechnol Bioeng; 2017 Sep 21; 114(9):2075-2084. PubMed ID: 28475210 [Abstract] [Full Text] [Related]
8. GSF2 deletion increases lactic acid production by alleviating glucose repression in Saccharomyces cerevisiae. Baek SH, Kwon EY, Kim SY, Hahn JS. Sci Rep; 2016 Oct 06; 6():34812. PubMed ID: 27708428 [Abstract] [Full Text] [Related]
9. Systematic engineering of Saccharomyces cerevisiae for D-lactic acid production with near theoretical yield. Watcharawipas A, Sae-Tang K, Sansatchanon K, Sudying P, Boonchoo K, Tanapongpipat S, Kocharin K, Runguphan W. FEMS Yeast Res; 2021 Apr 28; 21(4):. PubMed ID: 33856451 [Abstract] [Full Text] [Related]
10. L-lactic acid production from D-xylose with Candida sonorensis expressing a heterologous lactate dehydrogenase encoding gene. Koivuranta KT, Ilmén M, Wiebe MG, Ruohonen L, Suominen P, Penttilä M. Microb Cell Fact; 2014 Aug 08; 13():107. PubMed ID: 25104116 [Abstract] [Full Text] [Related]
11. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae. Sugiyama M, Akase SP, Nakanishi R, Kaneko Y, Harashima S. J Biosci Bioeng; 2016 Oct 08; 122(4):415-20. PubMed ID: 27102264 [Abstract] [Full Text] [Related]
12. Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae. Liu T, Sun L, Zhang C, Liu Y, Li J, Du G, Lv X, Liu L. Bioresour Technol; 2023 Jul 08; 379():129023. PubMed ID: 37028528 [Abstract] [Full Text] [Related]
13. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae. Turner TL, Zhang GC, Oh EJ, Subramaniam V, Adiputra A, Subramaniam V, Skory CD, Jang JY, Yu BJ, Park I, Jin YS. Biotechnol Bioeng; 2016 May 08; 113(5):1075-83. PubMed ID: 26524688 [Abstract] [Full Text] [Related]
14. Nicotinic acid controls lactate production by K1-LDH: a Saccharomyces cerevisiae strain expressing a bacterial LDH gene. Colombié S, Sablayrolles JM. J Ind Microbiol Biotechnol; 2004 Jun 08; 31(5):209-15. PubMed ID: 15205990 [Abstract] [Full Text] [Related]
15. D-Lactic Acid Production from Sugarcane Bagasse by Genetically Engineered Saccharomyces cerevisiae. Sornlek W, Sae-Tang K, Watcharawipas A, Wongwisansri S, Tanapongpipat S, Eurwilaichtr L, Champreda V, Runguphan W, Schaap PJ, Martins Dos Santos VAP. J Fungi (Basel); 2022 Aug 03; 8(8):. PubMed ID: 36012804 [Abstract] [Full Text] [Related]
16. Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases. Ilmén M, Koivuranta K, Ruohonen L, Rajgarhia V, Suominen P, Penttilä M. Microb Cell Fact; 2013 May 25; 12():53. PubMed ID: 23706009 [Abstract] [Full Text] [Related]
17. [Modification of carbon flux in Sacchromyces cerevisiae to improve L-lactic acid production]. Zhao L, Wang J, Zhou J, Liu L, Du G, Chen J. Wei Sheng Wu Xue Bao; 2011 Jan 25; 51(1):50-8. PubMed ID: 21465789 [Abstract] [Full Text] [Related]
18. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene. Skory CD. J Ind Microbiol Biotechnol; 2003 Jan 25; 30(1):22-7. PubMed ID: 12545382 [Abstract] [Full Text] [Related]
19. Efficient production of L-Lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene. Ishida N, Saitoh S, Tokuhiro K, Nagamori E, Matsuyama T, Kitamoto K, Takahashi H. Appl Environ Microbiol; 2005 Apr 25; 71(4):1964-70. PubMed ID: 15812027 [Abstract] [Full Text] [Related]
20. l-Lactic Acid Production via Sustainable Neutralizer-Free Route by Engineering Acid-Tolerant Yeast Pichia kudriavzevii. Zhang B, Li R, Yu L, Wu C, Liu Z, Bai F, Yu B, Wang L. J Agric Food Chem; 2023 Jul 26; 71(29):11131-11140. PubMed ID: 37439413 [Abstract] [Full Text] [Related] Page: [Next] [New Search]