These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


207 related items for PubMed ID: 32965110

  • 1. Nineteen New Flavanol-Fatty Alcohol Hybrids with α-Glucosidase and PTP1B Dual Inhibition: One Unusual Type of Antidiabetic Constituent from Amomum tsao-ko.
    He XF, Chen JJ, Li TZ, Zhang XK, Guo YQ, Zhang XM, Hu J, Geng CA.
    J Agric Food Chem; 2020 Oct 14; 68(41):11434-11448. PubMed ID: 32965110
    [Abstract] [Full Text] [Related]

  • 2. Diarylheptanoid-chalcone hybrids with PTP1B and α-glucosidase dual inhibition from Alpinia katsumadai.
    He XF, Chen JJ, Li TZ, Hu J, Zhang XM, Geng CA.
    Bioorg Chem; 2021 Mar 14; 108():104683. PubMed ID: 33545534
    [Abstract] [Full Text] [Related]

  • 3. Tsaokopyranols A-M, 2,6-epoxydiarylheptanoids from Amomum tsao-ko and their α-glucosidase inhibitory activity.
    He XF, Zhang XK, Geng CA, Hu J, Zhang XM, Guo YQ, Chen JJ.
    Bioorg Chem; 2020 Mar 14; 96():103638. PubMed ID: 32062448
    [Abstract] [Full Text] [Related]

  • 4. Antidiabetic Stilbenes from Peony Seeds with PTP1B, α-Glucosidase, and DPPIV Inhibitory Activities.
    Zhang CC, Geng CA, Huang XY, Zhang XM, Chen JJ.
    J Agric Food Chem; 2019 Jun 19; 67(24):6765-6772. PubMed ID: 31180676
    [Abstract] [Full Text] [Related]

  • 5. Tsaokoflavanols A1-J1: Flavanol-fatty alcohol hybrids with HPL inhibitory activity from Amomum tsao-ko.
    Yang TR, Huang SC, Wang YF, Lou ZX, Dai SX, Su LH, Xu M.
    Phytochemistry; 2024 Mar 19; 219():113982. PubMed ID: 38215812
    [Abstract] [Full Text] [Related]

  • 6. Amomutsaokols A-K, diarylheptanoids from Amomum tsao-ko and their α-glucosidase inhibitory activity.
    He XF, Wang HM, Geng CA, Hu J, Zhang XM, Guo YQ, Chen JJ.
    Phytochemistry; 2020 Sep 19; 177():112418. PubMed ID: 32679346
    [Abstract] [Full Text] [Related]

  • 7. Lignan Constituents from the Fruits of Viburnum macrocephalum f. keteleeri and Their α-Amylase, α-Glucosidase, and Protein Tyrosine Phosphatase 1B Inhibitory Activities.
    Zhao CC, Chen J, Shao JH, Zhang XH, Gu WY, Shen J, Liu Y.
    J Agric Food Chem; 2020 Oct 07; 68(40):11151-11160. PubMed ID: 32902977
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Potential of Polygonum cuspidatum Root as an Antidiabetic Food: Dual High-Resolution α-Glucosidase and PTP1B Inhibition Profiling Combined with HPLC-HRMS and NMR for Identification of Antidiabetic Constituents.
    Zhao Y, Chen MX, Kongstad KT, Jäger AK, Staerk D.
    J Agric Food Chem; 2017 Jun 07; 65(22):4421-4427. PubMed ID: 28497962
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Xanthones from the twigs of Garcinia oblongifolia and their antidiabetic activity.
    Trinh BT, Quach TT, Bui DN, Staerk D, Nguyen LD, Jäger AK.
    Fitoterapia; 2017 Apr 07; 118():126-131. PubMed ID: 28322990
    [Abstract] [Full Text] [Related]

  • 16. Anti-diabetic xanthones from the bark of Garcinia xanthochymus.
    Nguyen CN, Trinh BTD, Tran TB, Nguyen LT, Jäger AK, Nguyen LD.
    Bioorg Med Chem Lett; 2017 Aug 01; 27(15):3301-3304. PubMed ID: 28624142
    [Abstract] [Full Text] [Related]

  • 17. Natural Triterpenoids Isolated from Akebia trifoliata Stem Explants Exert a Hypoglycemic Effect via α-Glucosidase Inhibition and Glucose Uptake Stimulation in Insulin-Resistant HepG2 Cells.
    Bian G, Yang J, Elango J, Wu W, Bao B, Bao C.
    Chem Biodivers; 2021 May 01; 18(5):e2001030. PubMed ID: 33779055
    [Abstract] [Full Text] [Related]

  • 18. PTP1B and α-glucosidase inhibitors from Selaginella rolandi-principis and their glucose uptake stimulation.
    Nguyen DT, To DC, Tran TT, Tran MH, Nguyen PH.
    J Nat Med; 2021 Jan 01; 75(1):186-193. PubMed ID: 32926336
    [Abstract] [Full Text] [Related]

  • 19. Secondary metabolites from the flower buds of Lonicera japonica and their in vitro anti-diabetic activities.
    Liu Z, Cheng Z, He Q, Lin B, Gao P, Li L, Liu Q, Song S.
    Fitoterapia; 2016 Apr 01; 110():44-51. PubMed ID: 26915302
    [Abstract] [Full Text] [Related]

  • 20. Quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude root bark of Morus alba L.
    Zhao Y, Kongstad KT, Jäger AK, Nielsen J, Staerk D.
    J Chromatogr A; 2018 Jun 29; 1556():55-63. PubMed ID: 29729863
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.