These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
266 related items for PubMed ID: 32967611
41. The auxin-responsive CsSPL9-CsGH3.4 module finely regulates auxin levels to suppress the development of adventitious roots in tea (Camellia sinensis). Wang W, Jiao M, Huang X, Liang W, Ma Z, Lu Z, Tian S, Gao X, Fan L, He X, Bao J, Yu Y, Zhang D, Bao L. Plant J; 2024 Sep; 119(5):2273-2287. PubMed ID: 39012276 [Abstract] [Full Text] [Related]
42. Transcriptional sequencing and analysis of major genes involved in the adventitious root formation of mango cotyledon segments. Li YH, Zhang HN, Wu QS, Muday GK. Planta; 2017 Jun; 245(6):1193-1213. PubMed ID: 28303391 [Abstract] [Full Text] [Related]
43. Adventitious root formation is dynamically regulated by various hormones in leaf-vegetable sweetpotato cuttings. Pan R, Liu Y, Buitrago S, Jiang W, Gao H, Han H, Wu C, Wang Y, Zhang W, Yang X. J Plant Physiol; 2020 Oct; 253():153267. PubMed ID: 32858442 [Abstract] [Full Text] [Related]
45. Identification of Submergence-Responsive MicroRNAs and Their Targets Reveals Complex MiRNA-Mediated Regulatory Networks in Lotus (Nelumbo nucifera Gaertn). Jin Q, Xu Y, Mattson N, Li X, Wang B, Zhang X, Jiang H, Liu X, Wang Y, Yao D. Front Plant Sci; 2017 Aug; 8():6. PubMed ID: 28149304 [Abstract] [Full Text] [Related]
46. Overexpression of MsGH3.5 inhibits shoot and root development through the auxin and cytokinin pathways in apple plants. Zhao D, Wang Y, Feng C, Wei Y, Peng X, Guo X, Guo X, Zhai Z, Li J, Shen X, Li T. Plant J; 2020 Jul; 103(1):166-183. PubMed ID: 32031710 [Abstract] [Full Text] [Related]
47. Genome-wide identification, expression analysis, and transcriptome analysis of the IAA gene family in Zoysia japonica. Yang Z, Dong D, Qi Z, Jia C, Han L, Chao Y. Mol Biol Rep; 2023 May; 50(5):4385-4394. PubMed ID: 36961632 [Abstract] [Full Text] [Related]
48. Integration of mRNA and miRNA analysis reveals the molecular mechanism of potato (Solanum tuberosum L.) response to alkali stress. Kang Y, Yang X, Liu Y, Shi M, Zhang W, Fan Y, Yao Y, Zhang J, Qin S. Int J Biol Macromol; 2021 Jul 01; 182():938-949. PubMed ID: 33878362 [Abstract] [Full Text] [Related]
49. Transcription Profiles Reveal the Regulatory Synthesis of Phenols during the Development of Lotus Rhizome (Nelumbo nucifera Gaertn). Min T, Bao Y, Zhou B, Yi Y, Wang L, Hou W, Ai Y, Wang H. Int J Mol Sci; 2019 Jun 04; 20(11):. PubMed ID: 31167353 [Abstract] [Full Text] [Related]
50. Localized gene expression changes during adventitious root formation in black walnut (Juglans nigra L.). Stevens ME, Woeste KE, Pijut PM. Tree Physiol; 2018 Jun 01; 38(6):877-894. PubMed ID: 29378021 [Abstract] [Full Text] [Related]
51. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments. Li YH, Zou MH, Feng BH, Huang X, Zhang Z, Sun GM. Plant Physiol Biochem; 2012 Jun 01; 55():33-42. PubMed ID: 22522578 [Abstract] [Full Text] [Related]
52. Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling. Qi X, Li Q, Ma X, Qian C, Wang H, Ren N, Shen C, Huang S, Xu X, Xu Q, Chen X. Plant Cell Environ; 2019 May 01; 42(5):1458-1470. PubMed ID: 30556134 [Abstract] [Full Text] [Related]
53. Transcriptome analysis reveals the promotive effect of potassium by hormones and sugar signaling pathways during adventitious roots formation in the apple rootstock. Tahir MM, Chen S, Ma X, Li S, Zhang X, Shao Y, Shalmani A, Zhao C, Bao L, Zhang D. Plant Physiol Biochem; 2021 Aug 01; 165():123-136. PubMed ID: 34038809 [Abstract] [Full Text] [Related]
54. The effects of mepiquat chloride on the lateral root initiation of cotton seedlings are associated with auxin and auxin-conjugate homeostasis. Chen X, Zhang M, Wang M, Tan G, Zhang M, Hou YX, Wang B, Li Z. BMC Plant Biol; 2018 Dec 18; 18(1):361. PubMed ID: 30563457 [Abstract] [Full Text] [Related]
55. Morphological, transcriptomics and biochemical characterization of new dwarf mutant of Brassica napus. Wei C, Zhu L, Wen J, Yi B, Ma C, Tu J, Shen J, Fu T. Plant Sci; 2018 May 18; 270():97-113. PubMed ID: 29576090 [Abstract] [Full Text] [Related]
56. Integration of genetic, genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus. Ribeiro CL, Silva CM, Drost DR, Novaes E, Novaes CR, Dervinis C, Kirst M. BMC Plant Biol; 2016 Mar 16; 16():66. PubMed ID: 26983547 [Abstract] [Full Text] [Related]
57. Deep sequencing of Lotus corniculatus L. reveals key enzymes and potential transcription factors related to the flavonoid biosynthesis pathway. Wang Y, Hua W, Wang J, Hannoufa A, Xu Z, Wang Z. Mol Genet Genomics; 2013 Apr 16; 288(3-4):131-9. PubMed ID: 23463169 [Abstract] [Full Text] [Related]
59. micro RNA 172 (miR172) signals epidermal infection and is expressed in cells primed for bacterial invasion in Lotus japonicus roots and nodules. Holt DB, Gupta V, Meyer D, Abel NB, Andersen SU, Stougaard J, Markmann K. New Phytol; 2015 Oct 16; 208(1):241-56. PubMed ID: 25967282 [Abstract] [Full Text] [Related]
60. Role of auxin homeostasis and response in nitrogen limitation and dark stimulation of adventitious root formation in petunia cuttings. Yang H, Klopotek Y, Hajirezaei MR, Zerche S, Franken P, Druege U. Ann Bot; 2019 Nov 27; 124(6):1053-1066. PubMed ID: 31181150 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]