These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
187 related items for PubMed ID: 32968887
1. Enhancing water sampling of buried binding sites using nonequilibrium candidate Monte Carlo. Bergazin TD, Ben-Shalom IY, Lim NM, Gill SC, Gilson MK, Mobley DL. J Comput Aided Mol Des; 2021 Feb; 35(2):167-177. PubMed ID: 32968887 [Abstract] [Full Text] [Related]
2. Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo. Ge Y, Melling OJ, Dong W, Essex JW, Mobley DL. J Comput Aided Mol Des; 2022 Oct; 36(10):767-779. PubMed ID: 36198874 [Abstract] [Full Text] [Related]
3. Enhancing Sampling of Water Rehydration on Ligand Binding: A Comparison of Techniques. Ge Y, Wych DC, Samways ML, Wall ME, Essex JW, Mobley DL. J Chem Theory Comput; 2022 Mar 08; 18(3):1359-1381. PubMed ID: 35148093 [Abstract] [Full Text] [Related]
4. Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte Carlo. Gill SC, Lim NM, Grinaway PB, Rustenburg AS, Fass J, Ross GA, Chodera JD, Mobley DL. J Phys Chem B; 2018 May 31; 122(21):5579-5598. PubMed ID: 29486559 [Abstract] [Full Text] [Related]
5. Sampling Conformational Changes of Bound Ligands Using Nonequilibrium Candidate Monte Carlo and Molecular Dynamics. Sasmal S, Gill SC, Lim NM, Mobley DL. J Chem Theory Comput; 2020 Mar 10; 16(3):1854-1865. PubMed ID: 32058713 [Abstract] [Full Text] [Related]
6. Efficient Sampling of Cavity Hydration in Proteins with Nonequilibrium Grand Canonical Monte Carlo and Polarizable Force Fields. Deng J, Cui Q. J Chem Theory Comput; 2024 Mar 12; 20(5):1897-1911. PubMed ID: 38417108 [Abstract] [Full Text] [Related]
7. Simulating Water Exchange to Buried Binding Sites. Ben-Shalom IY, Lin C, Kurtzman T, Walker RC, Gilson MK. J Chem Theory Comput; 2019 Apr 09; 15(4):2684-2691. PubMed ID: 30835999 [Abstract] [Full Text] [Related]
8. Enhancing Side Chain Rotamer Sampling Using Nonequilibrium Candidate Monte Carlo. Burley KH, Gill SC, Lim NM, Mobley DL. J Chem Theory Comput; 2019 Mar 12; 15(3):1848-1862. PubMed ID: 30677291 [Abstract] [Full Text] [Related]
9. Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo. Melling OJ, Samways ML, Ge Y, Mobley DL, Essex JW. J Chem Theory Comput; 2023 Feb 14; 19(3):1050-1062. PubMed ID: 36692215 [Abstract] [Full Text] [Related]
10. Accounting for the Central Role of Interfacial Water in Protein-Ligand Binding Free Energy Calculations. Ben-Shalom IY, Lin Z, Radak BK, Lin C, Sherman W, Gilson MK. J Chem Theory Comput; 2020 Dec 08; 16(12):7883-7894. PubMed ID: 33206520 [Abstract] [Full Text] [Related]
11. Reversibly Sampling Conformations and Binding Modes Using Molecular Darting. Gill SC, Mobley DL. J Chem Theory Comput; 2021 Jan 12; 17(1):302-314. PubMed ID: 33289558 [Abstract] [Full Text] [Related]
12. Enhancing Water Sampling in Free Energy Calculations with Grand Canonical Monte Carlo. Ross GA, Russell E, Deng Y, Lu C, Harder ED, Abel R, Wang L. J Chem Theory Comput; 2020 Oct 13; 16(10):6061-6076. PubMed ID: 32955877 [Abstract] [Full Text] [Related]
13. Fragment Pose Prediction Using Non-equilibrium Candidate Monte Carlo and Molecular Dynamics Simulations. Lim NM, Osato M, Warren GL, Mobley DL. J Chem Theory Comput; 2020 Apr 14; 16(4):2778-2794. PubMed ID: 32167763 [Abstract] [Full Text] [Related]
14. Fast Equilibration of Water between Buried Sites and the Bulk by Molecular Dynamics with Parallel Monte Carlo Water Moves on Graphical Processing Units. Ben-Shalom IY, Lin C, Radak BK, Sherman W, Gilson MK. J Chem Theory Comput; 2021 Dec 14; 17(12):7366-7372. PubMed ID: 34762421 [Abstract] [Full Text] [Related]
15. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations. Deng Y, Roux B. J Chem Phys; 2008 Mar 21; 128(11):115103. PubMed ID: 18361618 [Abstract] [Full Text] [Related]
16. Assessing the Predictive Power of Relative Binding Free Energy Calculations for Test Cases Involving Displacement of Binding Site Water Molecules. Wahl J, Smieško M. J Chem Inf Model; 2019 Feb 25; 59(2):754-765. PubMed ID: 30640456 [Abstract] [Full Text] [Related]
17. aquaPELE: A Monte Carlo-Based Algorithm to Sample the Effects of Buried Water Molecules in Proteins. Municoy M, Roda S, Soler D, Soutullo A, Guallar V. J Chem Theory Comput; 2020 Dec 08; 16(12):7655-7670. PubMed ID: 33201691 [Abstract] [Full Text] [Related]
18. Receptor-Ligand Binding Free Energies from a Consecutive Histograms Monte Carlo Sampling Method. Liu H, Deng J, Luo Z, Lin Y, Merz KM, Zheng Z. J Chem Theory Comput; 2020 Oct 13; 16(10):6645-6655. PubMed ID: 32857938 [Abstract] [Full Text] [Related]
19. Alchemical Osmostat for Monte Carlo Simulation: Sampling Aqueous Electrolyte Solution in Open Systems. Izarra A, Coudert FX, Fuchs AH, Boutin A. J Phys Chem B; 2023 Jan 26; 127(3):766-776. PubMed ID: 36634303 [Abstract] [Full Text] [Related]
20. Middle-way flexible docking: Pose prediction using mixed-resolution Monte Carlo in estrogen receptor α. Spiriti J, Subramanian SR, Palli R, Wu M, Zuckerman DM. PLoS One; 2019 Jan 26; 14(4):e0215694. PubMed ID: 31013302 [Abstract] [Full Text] [Related] Page: [Next] [New Search]