These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


98 related items for PubMed ID: 32970400

  • 1. Pair of Residue Substitutions at the Outer Mouth of the Channel Pore Act as Inputs for a Boolean Logic "OR" Gate Based on the Glycine Receptor.
    Han L, Shan Q.
    ACS Chem Neurosci; 2020 Oct 21; 11(20):3409-3417. PubMed ID: 32970400
    [Abstract] [Full Text] [Related]

  • 2. Charged residues at the pore extracellular half of the glycine receptor facilitate channel gating: a potential role played by electrostatic repulsion.
    Tian Y, Chen S, Shan Q.
    J Physiol; 2020 Oct 21; 598(20):4643-4661. PubMed ID: 32844405
    [Abstract] [Full Text] [Related]

  • 3. Different Behaviors of a Glycine Receptor Channel Pore Residue between Wild-Type-Mimicking and Disease-Type-Mimicking Formats.
    Han L, Shan Q.
    ACS Chem Neurosci; 2021 Sep 15; 12(18):3397-3409. PubMed ID: 34460217
    [Abstract] [Full Text] [Related]

  • 4. Function of hyperekplexia-causing α1R271Q/L glycine receptors is restored by shifting the affected residue out of the allosteric signalling pathway.
    Shan Q, Han L, Lynch JW.
    Br J Pharmacol; 2012 Apr 15; 165(7):2113-23. PubMed ID: 21955162
    [Abstract] [Full Text] [Related]

  • 5. A Missense Mutation A384P Associated with Human Hyperekplexia Reveals a Desensitization Site of Glycine Receptors.
    Wang CH, Hernandez CC, Wu J, Zhou N, Hsu HY, Shen ML, Wang YC, Macdonald RL, Wu DC.
    J Neurosci; 2018 Mar 14; 38(11):2818-2831. PubMed ID: 29440552
    [Abstract] [Full Text] [Related]

  • 6. Cation-selective mutations in the M2 domain of the inhibitory glycine receptor channel reveal determinants of ion-charge selectivity.
    Keramidas A, Moorhouse AJ, Pierce KD, Schofield PR, Barry PH.
    J Gen Physiol; 2002 May 14; 119(5):393-410. PubMed ID: 11981020
    [Abstract] [Full Text] [Related]

  • 7. Murine startle mutant Nmf11 affects the structural stability of the glycine receptor and increases deactivation.
    Wilkins ME, Caley A, Gielen MC, Harvey RJ, Smart TG.
    J Physiol; 2016 Jul 01; 594(13):3589-607. PubMed ID: 27028707
    [Abstract] [Full Text] [Related]

  • 8. The Startle Disease Mutation E103K Impairs Activation of Human Homomeric α1 Glycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site.
    Safar F, Hurdiss E, Erotocritou M, Greiner T, Lape R, Irvine MW, Fang G, Jane D, Yu R, Dämgen MA, Biggin PC, Sivilotti LG.
    J Biol Chem; 2017 Mar 24; 292(12):5031-5042. PubMed ID: 28174298
    [Abstract] [Full Text] [Related]

  • 9. β Subunit M2-M3 loop conformational changes are uncoupled from α1 β glycine receptor channel gating: implications for human hereditary hyperekplexia.
    Shan Q, Han L, Lynch JW.
    PLoS One; 2011 Mar 24; 6(11):e28105. PubMed ID: 22132222
    [Abstract] [Full Text] [Related]

  • 10. The synthetic cannabinoid dehydroxylcannabidiol restores the function of a major GABAA receptor isoform in a cell model of hyperekplexia.
    Zou G, Xia J, Han Q, Liu D, Xiong W.
    J Biol Chem; 2020 Jan 03; 295(1):138-145. PubMed ID: 31757808
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Glycine receptor knock-in mice and hyperekplexia-like phenotypes: comparisons with the null mutant.
    Findlay GS, Phelan R, Roberts MT, Homanics GE, Bergeson SE, Lopreato GF, Mihic SJ, Blednov YA, Harris RA.
    J Neurosci; 2003 Sep 03; 23(22):8051-9. PubMed ID: 12954867
    [Abstract] [Full Text] [Related]

  • 13. Mutations within the agonist-binding site convert the homomeric alpha1 glycine receptor into a Zn2+-activated chloride channel.
    Grudzinska J, Schumann T, Schemm R, Betz H, Laube B.
    Channels (Austin); 2008 Sep 03; 2(1):13-8. PubMed ID: 18690053
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. A Novel Glycine Receptor Variant with Startle Disease Affects Syndapin I and Glycinergic Inhibition.
    Langlhofer G, Schaefer N, Maric HM, Keramidas A, Zhang Y, Baumann P, Blum R, Breitinger U, Strømgaard K, Schlosser A, Kessels MM, Koch D, Qualmann B, Breitinger HG, Lynch JW, Villmann C.
    J Neurosci; 2020 Jun 17; 40(25):4954-4969. PubMed ID: 32354853
    [Abstract] [Full Text] [Related]

  • 17. Disruption of an intersubunit electrostatic bond is a critical step in glycine receptor activation.
    Todorovic J, Welsh BT, Bertaccini EJ, Trudell JR, Mihic SJ.
    Proc Natl Acad Sci U S A; 2010 Apr 27; 107(17):7987-92. PubMed ID: 20385800
    [Abstract] [Full Text] [Related]

  • 18. Investigating the Mechanism by Which Gain-of-function Mutations to the α1 Glycine Receptor Cause Hyperekplexia.
    Zhang Y, Bode A, Nguyen B, Keramidas A, Lynch JW.
    J Biol Chem; 2016 Jul 15; 291(29):15332-41. PubMed ID: 27226610
    [Abstract] [Full Text] [Related]

  • 19. Effects of a mutation in the TM2-TM3 linker region of the glycine receptor alpha1 subunit on gating and allosteric modulation.
    Dupre ML, Broyles JM, Mihic SJ.
    Brain Res; 2007 Jun 04; 1152():1-9. PubMed ID: 17434460
    [Abstract] [Full Text] [Related]

  • 20. Comparative surface accessibility of a pore-lining threonine residue (T6') in the glycine and GABA(A) receptors.
    Shan Q, Haddrill JL, Lynch JW.
    J Biol Chem; 2002 Nov 22; 277(47):44845-53. PubMed ID: 12239220
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.