These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


463 related items for PubMed ID: 32993088

  • 1. AQP2: Mutations Associated with Congenital Nephrogenic Diabetes Insipidus and Regulation by Post-Translational Modifications and Protein-Protein Interactions.
    Gao C, Higgins PJ, Zhang W.
    Cells; 2020 Sep 26; 9(10):. PubMed ID: 32993088
    [Abstract] [Full Text] [Related]

  • 2. Hereditary Nephrogenic Diabetes Insipidus: Pathophysiology and Possible Treatment. An Update.
    Milano S, Carmosino M, Gerbino A, Svelto M, Procino G.
    Int J Mol Sci; 2017 Nov 10; 18(11):. PubMed ID: 29125546
    [Abstract] [Full Text] [Related]

  • 3. Genetic forms of nephrogenic diabetes insipidus (NDI): Vasopressin receptor defect (X-linked) and aquaporin defect (autosomal recessive and dominant).
    Bichet DG, Bockenhauer D.
    Best Pract Res Clin Endocrinol Metab; 2016 Mar 10; 30(2):263-76. PubMed ID: 27156763
    [Abstract] [Full Text] [Related]

  • 4. A female with X-linked Nephrogenic diabetes insipidus in a family with inherited central diabetes Insipidus: Case report and review of the literature.
    Ding C, Beetz R, Rittner G, Bartsch O.
    Am J Med Genet A; 2020 May 10; 182(5):1032-1040. PubMed ID: 32073219
    [Abstract] [Full Text] [Related]

  • 5. V2R mutations and nephrogenic diabetes insipidus.
    Bichet DG.
    Prog Mol Biol Transl Sci; 2009 May 10; 89():15-29. PubMed ID: 20374732
    [Abstract] [Full Text] [Related]

  • 6. Nephrogenic diabetes insipidus.
    Bichet DG.
    Adv Chronic Kidney Dis; 2006 Apr 10; 13(2):96-104. PubMed ID: 16580609
    [Abstract] [Full Text] [Related]

  • 7. Physiopathology and diagnosis of nephrogenic diabetes insipidus.
    Devuyst O.
    Ann Endocrinol (Paris); 2012 Apr 10; 73(2):128-9. PubMed ID: 22503803
    [Abstract] [Full Text] [Related]

  • 8. [Clinical and laboratory characteristics of arginine vasopressin resistance, caused by a new homozygous mutation p.R113C in AQP2].
    Makretskaya NA, Nanzanova US, Hamaganova IR, Eremina ER, Tiulpakov AN.
    Probl Endokrinol (Mosk); 2023 May 12; 69(2):75-79. PubMed ID: 37448274
    [Abstract] [Full Text] [Related]

  • 9. Hereditary nephrogenic diabetes insipidus in Japanese patients: analysis of 78 families and report of 22 new mutations in AVPR2 and AQP2.
    Sasaki S, Chiga M, Kikuchi E, Rai T, Uchida S.
    Clin Exp Nephrol; 2013 Jun 12; 17(3):338-44. PubMed ID: 23150186
    [Abstract] [Full Text] [Related]

  • 10. Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment.
    Moeller HB, Rittig S, Fenton RA.
    Endocr Rev; 2013 Apr 12; 34(2):278-301. PubMed ID: 23360744
    [Abstract] [Full Text] [Related]

  • 11. Nephrogenic diabetes insipidus.
    Bichet DG.
    Am J Med; 1998 Nov 12; 105(5):431-42. PubMed ID: 9831428
    [Abstract] [Full Text] [Related]

  • 12. Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus.
    Robben JH, Knoers NV, Deen PM.
    Am J Physiol Renal Physiol; 2006 Aug 12; 291(2):F257-70. PubMed ID: 16825342
    [Abstract] [Full Text] [Related]

  • 13. Mutations in the vasopressin V2 receptor and aquaporin-2 genes in 12 families with congenital nephrogenic diabetes insipidus.
    Vargas-Poussou R, Forestier L, Dautzenberg MD, Niaudet P, Déchaux M, Antignac C.
    J Am Soc Nephrol; 1997 Dec 12; 8(12):1855-62. PubMed ID: 9402087
    [Abstract] [Full Text] [Related]

  • 14. Novel mutations associated with nephrogenic diabetes insipidus. A clinical-genetic study.
    García Castaño A, Pérez de Nanclares G, Madariaga L, Aguirre M, Chocron S, Madrid A, Lafita Tejedor FJ, Gil Campos M, Sánchez Del Pozo J, Ruiz Cano R, Espino M, Gomez Vida JM, Santos F, García Nieto VM, Loza R, Rodríguez LM, Hidalgo Barquero E, Printza N, Camacho JA, Castaño L, Ariceta G, RenalTube Group.
    Eur J Pediatr; 2015 Oct 12; 174(10):1373-85. PubMed ID: 25902753
    [Abstract] [Full Text] [Related]

  • 15. Genetic deletion of the nuclear factor of activated T cells 5 in collecting duct principal cells causes nephrogenic diabetes insipidus.
    Petrillo F, Chernyakov D, Esteva-Font C, Poulsen SB, Edemir B, Fenton RA.
    FASEB J; 2022 Nov 12; 36(11):e22583. PubMed ID: 36197017
    [Abstract] [Full Text] [Related]

  • 16. Integrin-linked kinase regulates tubular aquaporin-2 content and intracellular location: a link between the extracellular matrix and water reabsorption.
    Cano-Peñalver JL, Griera M, Serrano I, Rodríguez-Puyol D, Dedhar S, de Frutos S, Rodríguez-Puyol M.
    FASEB J; 2014 Aug 12; 28(8):3645-59. PubMed ID: 24784577
    [Abstract] [Full Text] [Related]

  • 17. Novel AQP2 Mutations and Clinical Characteristics in Seven Chinese Families With Congenital Nephrogenic Diabetes Insipidus.
    Li Q, Tian D, Cen J, Duan L, Xia W.
    Front Endocrinol (Lausanne); 2021 Aug 12; 12():686818. PubMed ID: 34177810
    [Abstract] [Full Text] [Related]

  • 18. Activation of AQP2 water channels by protein kinase A: therapeutic strategies for congenital nephrogenic diabetes insipidus.
    Ando F.
    Clin Exp Nephrol; 2021 Oct 12; 25(10):1051-1056. PubMed ID: 34224008
    [Abstract] [Full Text] [Related]

  • 19. Partial nephrogenic diabetes insipidus caused by a novel mutation in the AVPR2 gene.
    Faerch M, Christensen JH, Corydon TJ, Kamperis K, de Zegher F, Gregersen N, Robertson GL, Rittig S.
    Clin Endocrinol (Oxf); 2008 Mar 12; 68(3):395-403. PubMed ID: 17941907
    [Abstract] [Full Text] [Related]

  • 20. Severe congenital nephrogenic diabetes insipidus in a compound heterozygote with a new large deletion of the AQP2 gene. A case report.
    Peces R, Mena R, Peces C, Santos-Simarro F, Fernández L, Afonso S, Lapunzina P, Selgas R, Nevado J.
    Mol Genet Genomic Med; 2019 Apr 12; 7(4):e00568. PubMed ID: 30784238
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.