These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


520 related items for PubMed ID: 32993979

  • 1. Preparation and characterization of 12-HSA-based organogels as injectable implants for the controlled delivery of hydrophilic and lipophilic therapeutic agents.
    Esposito CL, Tardif V, Sarrazin M, Kirilov P, Roullin VG.
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110999. PubMed ID: 32993979
    [Abstract] [Full Text] [Related]

  • 2. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug.
    Pereira Camelo SR, Franceschi S, Perez E, Girod Fullana S, Ré MI.
    Drug Dev Ind Pharm; 2016 Sep; 42(6):985-97. PubMed ID: 26548427
    [Abstract] [Full Text] [Related]

  • 3. Combined effect of shearing and cooling rate on the rheology of organogels developed by selected gelators.
    De la Peña-Gil A, Álvarez-Mitre FM, González-Chávez MM, Charó-Alonso MA, Toro-Vazquez JF.
    Food Res Int; 2017 Mar; 93():52-65. PubMed ID: 28290280
    [Abstract] [Full Text] [Related]

  • 4. Investigation of injectable drospirenone organogels with regard to their rheology and comparison to non-stabilized oil-based drospirenone suspensions.
    Nippe S, General S.
    Drug Dev Ind Pharm; 2015 Apr; 41(4):681-91. PubMed ID: 24621345
    [Abstract] [Full Text] [Related]

  • 5. Sodium alginate in oil-poloxamer organogels for intravaginal drug delivery: Influence on structural parameters, drug release mechanisms, cytotoxicity and in vitro antifungal activity.
    Querobino SM, de Faria NC, Vigato AA, da Silva BGM, Machado IP, Costa MS, Costa FN, de Araujo DR, Alberto-Silva C.
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():1350-1361. PubMed ID: 30889669
    [Abstract] [Full Text] [Related]

  • 6. Organogels based on amino acid derivatives and their optimization for drug release using response surface methodology.
    Hu B, Yan H, Sun Y, Chen X, Sun Y, Li S, Jing Y, Li H.
    Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):266-275. PubMed ID: 31851842
    [Abstract] [Full Text] [Related]

  • 7. Self-assembled drug delivery system based on low-molecular-weight bis-amide organogelator: synthesis, properties and in vivo evaluation.
    Li Z, Cao J, Li H, Liu H, Han F, Liu Z, Tong C, Li S.
    Drug Deliv; 2016 Oct; 23(8):3168-3178. PubMed ID: 26912188
    [Abstract] [Full Text] [Related]

  • 8. Application of organogels as oral controlled release formulations of hydrophilic drugs.
    Iwanaga K, Kawai M, Miyazaki M, Kakemi M.
    Int J Pharm; 2012 Oct 15; 436(1-2):869-72. PubMed ID: 22766444
    [Abstract] [Full Text] [Related]

  • 9. An examination of the rheological and mucoadhesive properties of poly(acrylic acid) organogels designed as platforms for local drug delivery to the oral cavity.
    Jones DS, Muldoon BC, Woolfson AD, Sanderson FD.
    J Pharm Sci; 2007 Oct 15; 96(10):2632-46. PubMed ID: 17702045
    [Abstract] [Full Text] [Related]

  • 10. Characterization of organogel as a novel oral controlled release formulation for lipophilic compounds.
    Iwanaga K, Sumizawa T, Miyazaki M, Kakemi M.
    Int J Pharm; 2010 Mar 30; 388(1-2):123-8. PubMed ID: 20045041
    [Abstract] [Full Text] [Related]

  • 11. Formulation and evaluation of lecithin organogel for topical delivery of fluconazole.
    Jadhav KR, Kadam VJ, Pisal SS.
    Curr Drug Deliv; 2009 Apr 30; 6(2):174-83. PubMed ID: 19450224
    [Abstract] [Full Text] [Related]

  • 12. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent.
    Patel AR, Babaahmadi M, Lesaffer A, Dewettinck K.
    J Agric Food Chem; 2015 May 20; 63(19):4862-9. PubMed ID: 25932656
    [Abstract] [Full Text] [Related]

  • 13. Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid.
    Jhawat V, Gupta S, Saini V.
    Drug Deliv; 2016 Nov 20; 23(9):3573-3581. PubMed ID: 27494650
    [Abstract] [Full Text] [Related]

  • 14. Parenteral thermo-sensitive organogel for schizophrenia therapy, in vitro and in vivo evaluation.
    Wang D, Zhao J, Liu X, Sun F, Zhou Y, Teng L, Li Y.
    Eur J Pharm Sci; 2014 Aug 18; 60():40-8. PubMed ID: 24815944
    [Abstract] [Full Text] [Related]

  • 15. Cooling rate effects on the microstructure, solid content, and rheological properties of organogels of amides derived from stearic and (R)-12-hydroxystearic acid in vegetable oil.
    Toro-Vazquez JF, Morales-Rueda J, Torres-Martínez A, Charó-Alonso MA, Mallia VA, Weiss RG.
    Langmuir; 2013 Jun 25; 29(25):7642-54. PubMed ID: 23697446
    [Abstract] [Full Text] [Related]

  • 16. Strength enhancement of nanostructured organogels through inclusion of phthalocyanine-containing complementary organogelator structures and in situ cross-linking by click chemistry.
    Díaz DD, Cid JJ, Vázquez P, Torres T.
    Chemistry; 2008 Jun 25; 14(30):9261-73. PubMed ID: 18729114
    [Abstract] [Full Text] [Related]

  • 17. Topical delivery of aceclofenac from lecithin organogels: preformulation study.
    Shaikh IM, Jadhav KR, Gide PS, Kadam VJ, Pisal SS.
    Curr Drug Deliv; 2006 Oct 25; 3(4):417-27. PubMed ID: 17076644
    [Abstract] [Full Text] [Related]

  • 18. Structural and mechanical properties of organogels: Role of oil and gelator molecular structure.
    Cerqueira MA, Fasolin LH, Picone CSF, Pastrana LM, Cunha RL, Vicente AA.
    Food Res Int; 2017 Jun 25; 96():161-170. PubMed ID: 28528095
    [Abstract] [Full Text] [Related]

  • 19. Olive oil/policosanol organogels for nutraceutical and drug delivery purposes.
    Lupi FR, Gabriele D, Baldino N, Mijovic P, Parisi OI, Puoci F.
    Food Funct; 2013 Oct 25; 4(10):1512-20. PubMed ID: 24056806
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 26.