These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats. Yoshimi K, Oka Y, Miyasaka Y, Kotani Y, Yasumura M, Uno Y, Hattori K, Tanigawa A, Sato M, Oya M, Nakamura K, Matsushita N, Kobayashi K, Mashimo T. Hum Genet; 2021 Feb; 140(2):277-287. PubMed ID: 32617796 [Abstract] [Full Text] [Related]
7. Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Yao X, Wang X, Hu X, Liu Z, Liu J, Zhou H, Shen X, Wei Y, Huang Z, Ying W, Wang Y, Nie YH, Zhang CC, Li S, Cheng L, Wang Q, Wu Y, Huang P, Sun Q, Shi L, Yang H. Cell Res; 2017 Jun; 27(6):801-814. PubMed ID: 28524166 [Abstract] [Full Text] [Related]
8. From DNA break repair pathways to CRISPR/Cas-mediated gene knock-in methods. Rezazade Bazaz M, Dehghani H. Life Sci; 2022 Apr 15; 295():120409. PubMed ID: 35182556 [Abstract] [Full Text] [Related]
17. Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Gu B, Posfai E, Rossant J. Nat Biotechnol; 2018 Aug 10; 36(7):632-637. PubMed ID: 29889212 [Abstract] [Full Text] [Related]
18. Genome editing in human hematopoietic stem and progenitor cells via CRISPR-Cas9-mediated homology-independent targeted integration. Bloomer H, Smith RH, Hakami W, Larochelle A. Mol Ther; 2021 Apr 07; 29(4):1611-1624. PubMed ID: 33309880 [Abstract] [Full Text] [Related]
19. Precision genome editing in the CRISPR era. Salsman J, Dellaire G. Biochem Cell Biol; 2017 Apr 07; 95(2):187-201. PubMed ID: 28177771 [Abstract] [Full Text] [Related]
20. Genome editing with the donor plasmid equipped with synthetic crRNA-target sequence. Ishibashi R, Abe K, Ido N, Kitano S, Miyachi H, Toyoshima F. Sci Rep; 2020 Aug 24; 10(1):14120. PubMed ID: 32839482 [Abstract] [Full Text] [Related] Page: [Next] [New Search]