These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
138 related items for PubMed ID: 32999209
1. Unraveling the Effects of Trimethylamine N-Oxide on Stroke: "The lower, the better?". Yamashita T, Yoshida N, Emoto T, Hirata KI. J Atheroscler Thromb; 2021 Apr 01; 28(4):314-316. PubMed ID: 32999209 [No Abstract] [Full Text] [Related]
2. Effects of dietary choline, betaine, and L-carnitine on the generation of trimethylamine-N-oxide in healthy mice. Yu ZL, Zhang LY, Jiang XM, Xue CH, Chi N, Zhang TT, Wang YM. J Food Sci; 2020 Jul 01; 85(7):2207-2215. PubMed ID: 32572979 [Abstract] [Full Text] [Related]
3. Serum Trimethylamine N-oxide, Carnitine, Choline, and Betaine in Relation to Colorectal Cancer Risk in the Alpha Tocopherol, Beta Carotene Cancer Prevention Study. Guertin KA, Li XS, Graubard BI, Albanes D, Weinstein SJ, Goedert JJ, Wang Z, Hazen SL, Sinha R. Cancer Epidemiol Biomarkers Prev; 2017 Jun 01; 26(6):945-952. PubMed ID: 28077427 [Abstract] [Full Text] [Related]
4. Causal relationships between gut metabolites and Alzheimer's disease: a bidirectional Mendelian randomization study. Zhuang Z, Gao M, Yang R, Liu Z, Cao W, Huang T. Neurobiol Aging; 2021 Apr 01; 100():119.e15-119.e18. PubMed ID: 33280888 [Abstract] [Full Text] [Related]
5. Dietary bioactive ingredients to modulate the gut microbiota-derived metabolite TMAO. New opportunities for functional food development. Simó C, García-Cañas V. Food Funct; 2020 Aug 01; 11(8):6745-6776. PubMed ID: 32686802 [Abstract] [Full Text] [Related]
6. Methodological considerations for the identification of choline and carnitine-degrading bacteria in the gut. Jameson E, Quareshy M, Chen Y. Methods; 2018 Oct 01; 149():42-48. PubMed ID: 29684641 [Abstract] [Full Text] [Related]
7. Choline Pathway Nutrients and Metabolites and Cognitive Impairment After Acute Ischemic Stroke. Zhong C, Lu Z, Che B, Qian S, Zheng X, Wang A, Bu X, Zhang J, Ju Z, Xu T, Zhang Y. Stroke; 2021 Mar 01; 52(3):887-895. PubMed ID: 33467878 [Abstract] [Full Text] [Related]
8. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. Trøseid M, Ueland T, Hov JR, Svardal A, Gregersen I, Dahl CP, Aakhus S, Gude E, Bjørndal B, Halvorsen B, Karlsen TH, Aukrust P, Gullestad L, Berge RK, Yndestad A. J Intern Med; 2015 Jun 01; 277(6):717-26. PubMed ID: 25382824 [Abstract] [Full Text] [Related]
9. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Wang Z, Tang WH, Buffa JA, Fu X, Britt EB, Koeth RA, Levison BS, Fan Y, Wu Y, Hazen SL. Eur Heart J; 2014 Apr 01; 35(14):904-10. PubMed ID: 24497336 [Abstract] [Full Text] [Related]
11. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation. Kuka J, Liepinsh E, Makrecka-Kuka M, Liepins J, Cirule H, Gustina D, Loza E, Zharkova-Malkova O, Grinberga S, Pugovics O, Dambrova M. Life Sci; 2014 Nov 11; 117(2):84-92. PubMed ID: 25301199 [Abstract] [Full Text] [Related]
12. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Xu KY, Xia GH, Lu JQ, Chen MX, Zhen X, Wang S, You C, Nie J, Zhou HW, Yin J. Sci Rep; 2017 May 03; 7(1):1445. PubMed ID: 28469156 [Abstract] [Full Text] [Related]
13. Circulating gut microbiota metabolite trimethylamine N-oxide and oral contraceptive use in polycystic ovary syndrome. Eyupoglu ND, Caliskan Guzelce E, Acikgoz A, Uyanik E, Bjørndal B, Berge RK, Svardal A, Yildiz BO. Clin Endocrinol (Oxf); 2019 Dec 03; 91(6):810-815. PubMed ID: 31556132 [Abstract] [Full Text] [Related]
14. Whole egg consumption increases plasma choline and betaine without affecting TMAO levels or gut microbiome in overweight postmenopausal women. Zhu C, Sawrey-Kubicek L, Bardagjy AS, Houts H, Tang X, Sacchi R, Randolph JM, Steinberg FM, Zivkovic AM. Nutr Res; 2020 Jun 03; 78():36-41. PubMed ID: 32464420 [Abstract] [Full Text] [Related]
15. Ruminant meat and milk contain δ-valerobetaine, another precursor of trimethylamine N-oxide (TMAO) like γ-butyrobetaine. Servillo L, D'Onofrio N, Giovane A, Casale R, Cautela D, Castaldo D, Iannaccone F, Neglia G, Campanile G, Balestrieri ML. Food Chem; 2018 Sep 15; 260():193-199. PubMed ID: 29699662 [Abstract] [Full Text] [Related]
16. Gut microbial metabolite TMAO portends prognosis in acute ischemic stroke. Zhang J, Wang L, Cai J, Lei A, Liu C, Lin R, Jia L, Fu Y. J Neuroimmunol; 2021 May 15; 354():577526. PubMed ID: 33647820 [Abstract] [Full Text] [Related]
17. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. Romano KA, Vivas EI, Amador-Noguez D, Rey FE. mBio; 2015 Mar 17; 6(2):e02481. PubMed ID: 25784704 [Abstract] [Full Text] [Related]
18. Dietary, anthropometric, and biochemical factors influencing plasma choline, carnitine, trimethylamine, and trimethylamine-N-oxide concentrations. Malinowska AM, Szwengiel A, Chmurzynska A. Int J Food Sci Nutr; 2017 Jun 17; 68(4):488-495. PubMed ID: 27855528 [Abstract] [Full Text] [Related]
19. Changes in the concentrations of trimethylamine N-oxide (TMAO) and its precursors in patients with amyotrophic lateral sclerosis. Chen L, Chen Y, Zhao M, Zheng L, Fan D. Sci Rep; 2020 Sep 16; 10(1):15198. PubMed ID: 32938991 [Abstract] [Full Text] [Related]
20. Identification of Sinapine-Derived Choline from a Rapeseed Diet as a Source of Serum Trimethylamine N-Oxide in Pigs. Chen H, Peng L, Pérez de Nanclares M, Trudeau MP, Yao D, Cheng Z, Urriola PE, Mydland LT, Shurson GC, Overland M, Chen C. J Agric Food Chem; 2019 Jul 10; 67(27):7748-7754. PubMed ID: 31203621 [Abstract] [Full Text] [Related] Page: [Next] [New Search]