These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
114 related items for PubMed ID: 33019077
1. Ankle torque forecasting using time-delayed neural networks. Zarshenas H, Ruddy BP, Kempa-Liehr AW, Besier TF. Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4854-4857. PubMed ID: 33019077 [Abstract] [Full Text] [Related]
2. Using recurrent artificial neural network model to estimate voluntary elbow torque in dynamic situations. Song R, Tong KY. Med Biol Eng Comput; 2005 Jul; 43(4):473-80. PubMed ID: 16255429 [Abstract] [Full Text] [Related]
3. A Neural Network Estimation of Ankle Torques From Electromyography and Accelerometry. Siu HC, Sloboda J, McKindles RJ, Stirling LA. IEEE Trans Neural Syst Rehabil Eng; 2021 Jul; 29():1624-1633. PubMed ID: 34388093 [Abstract] [Full Text] [Related]
4. A dynamic EMG-torque model of elbow based on neural networks. Liang Peng, Zeng-Guang Hou, Weiqun Wang. Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2852-5. PubMed ID: 26736886 [Abstract] [Full Text] [Related]
5. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. Ao D, Song R, Gao J. IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719 [Abstract] [Full Text] [Related]
7. Individual-specific muscle maximum force estimation using ultrasound for ankle joint torque prediction using an EMG-driven Hill-type model. de Oliveira LF, Menegaldo LL. J Biomech; 2010 Oct 19; 43(14):2816-21. PubMed ID: 20541763 [Abstract] [Full Text] [Related]
10. Lower-Limb Joint Torque Prediction Using LSTM Neural Networks and Transfer Learning. Zhang L, Soselia D, Wang R, Gutierrez-Farewik EM. IEEE Trans Neural Syst Rehabil Eng; 2022 Oct 19; 30():600-609. PubMed ID: 35239487 [Abstract] [Full Text] [Related]
11. Dynamics Combined With Hill Model for Functional Electrical Stimulation Ankle Angle Prediction. Zhang X, Jiang Z, Li X, Xu P, Vasic ZL, Culjak I, Cifrek M, Du M, Gao Y. IEEE J Biomed Health Inform; 2023 May 19; 27(5):2186-2196. PubMed ID: 35271456 [Abstract] [Full Text] [Related]
12. Using Deep Learning Models to Predict Prosthetic Ankle Torque. Prasanna C, Realmuto J, Anderson A, Rombokas E, Klute G. Sensors (Basel); 2023 Sep 06; 23(18):. PubMed ID: 37765769 [Abstract] [Full Text] [Related]
14. Neural-mechanical feedback control scheme generates physiological ankle torque fluctuation during quiet stance. Vette AH, Masani K, Nakazawa K, Popovic MR. IEEE Trans Neural Syst Rehabil Eng; 2010 Feb 06; 18(1):86-95. PubMed ID: 20071280 [Abstract] [Full Text] [Related]
15. 3D strength surfaces for ankle plantar- and dorsi-flexion in healthy adults: an isometric and isokinetic dynamometry study. Hussain SJ, Frey-Law L. J Foot Ankle Res; 2016 Feb 06; 9():43. PubMed ID: 27843491 [Abstract] [Full Text] [Related]
16. Knee and ankle joint torque-angle relationships of multi-joint leg extension. Hahn D, Olvermann M, Richtberg J, Seiberl W, Schwirtz A. J Biomech; 2011 Jul 28; 44(11):2059-65. PubMed ID: 21621211 [Abstract] [Full Text] [Related]
18. A new method for measuring passive length-tension properties of human gastrocnemius muscle in vivo. Hoang PD, Gorman RB, Todd G, Gandevia SC, Herbert RD. J Biomech; 2005 Jun 28; 38(6):1333-41. PubMed ID: 15863118 [Abstract] [Full Text] [Related]
20. Mechanomyographic and electromyographic responses of the triceps surae during maximal voluntary contractions. Miyamoto N, Oda S. J Electromyogr Kinesiol; 2003 Oct 28; 13(5):451-9. PubMed ID: 12932419 [Abstract] [Full Text] [Related] Page: [Next] [New Search]