These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
226 related items for PubMed ID: 33023939
1. Molecular Basis for Chemical Evolution of Flavones to Flavonols and Anthocyanins in Land Plants. Li DD, Ni R, Wang PP, Zhang XS, Wang PY, Zhu TT, Sun CJ, Liu CJ, Lou HX, Cheng AX. Plant Physiol; 2020 Dec; 184(4):1731-1743. PubMed ID: 33023939 [Abstract] [Full Text] [Related]
2. Molecular identification of a flavone synthase I/flavanone 3β-hydroxylase bifunctional enzyme from fern species Psilotum nudum. Fu J, Wang PY, Ni R, Zhang JZ, Zhu TT, Tan H, Zhang J, Lou HX, Cheng AX. Plant Sci; 2023 Apr; 329():111599. PubMed ID: 36682585 [Abstract] [Full Text] [Related]
3. Molecular and Functional Characterization of Oryza sativa Flavonol Synthase (OsFLS), a Bifunctional Dioxygenase. Park S, Kim DH, Park BR, Lee JY, Lim SH. J Agric Food Chem; 2019 Jul 03; 67(26):7399-7409. PubMed ID: 31244203 [Abstract] [Full Text] [Related]
4. Phylogenomics reveals convergent evolution of red-violet coloration in land plants and the origins of the anthocyanin biosynthetic pathway. Piatkowski BT, Imwattana K, Tripp EA, Weston DJ, Healey A, Schmutz J, Shaw AJ. Mol Phylogenet Evol; 2020 Oct 03; 151():106904. PubMed ID: 32645485 [Abstract] [Full Text] [Related]
5. Functional identification of a flavone synthase and a flavonol synthase genes affecting flower color formation in Chrysanthemum morifolium. Wang Y, Zhou LJ, Wang Y, Liu S, Geng Z, Song A, Jiang J, Chen S, Chen F. Plant Physiol Biochem; 2021 Sep 03; 166():1109-1120. PubMed ID: 34328869 [Abstract] [Full Text] [Related]
6. 'Le Rouge et le Noir': a decline in flavone formation correlates with the rare color of black dahlia (Dahlia variabilis hort.) flowers. Thill J, Miosic S, Ahmed R, Schlangen K, Muster G, Stich K, Halbwirth H. BMC Plant Biol; 2012 Nov 23; 12():225. PubMed ID: 23176321 [Abstract] [Full Text] [Related]
7. Three 2-oxoglutarate-dependent dioxygenase activities of Equisetum arvense L. forming flavone and flavonol from (2S)-naringenin. Bredebach M, Matern U, Martens S. Phytochemistry; 2011 May 23; 72(7):557-63. PubMed ID: 21353683 [Abstract] [Full Text] [Related]
8. Apiaceae FNS I originated from F3H through tandem gene duplication. Pucker B, Iorizzo M. PLoS One; 2023 May 23; 18(1):e0280155. PubMed ID: 36656808 [Abstract] [Full Text] [Related]
9. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli. Miyahisa I, Funa N, Ohnishi Y, Martens S, Moriguchi T, Horinouchi S. Appl Microbiol Biotechnol; 2006 Jun 23; 71(1):53-8. PubMed ID: 16133333 [Abstract] [Full Text] [Related]
10. Functional Characterization of Flavanone 3-Hydroxylase (F3H) and Its Role in Anthocyanin and Flavonoid Biosynthesis in Mulberry. Dai M, Kang X, Wang Y, Huang S, Guo Y, Wang R, Chao N, Liu L. Molecules; 2022 May 23; 27(10):. PubMed ID: 35630816 [Abstract] [Full Text] [Related]
11. Roles of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily in the Flavonoid Pathway: A Review of the Functional Diversity of F3H, FNS I, FLS, and LDOX/ANS. Wang Y, Shi Y, Li K, Yang D, Liu N, Zhang L, Zhao L, Zhang X, Liu Y, Gao L, Xia T, Wang P. Molecules; 2021 Nov 08; 26(21):. PubMed ID: 34771153 [Abstract] [Full Text] [Related]
12. Biosynthesis of plant-specific flavones and flavonols in Streptomyces venezuelae. Park SR, Paik JH, Ahn MS, Park JW, Yoon YJ. J Microbiol Biotechnol; 2010 Sep 08; 20(9):1295-9. PubMed ID: 20890094 [Abstract] [Full Text] [Related]
13. Flower colour and cytochromes P450. Tanaka Y, Brugliera F. Philos Trans R Soc Lond B Biol Sci; 2013 Feb 19; 368(1612):20120432. PubMed ID: 23297355 [Abstract] [Full Text] [Related]
14. A Moss 2-Oxoglutarate/Fe(II)-Dependent Dioxygenases (2-ODD) Gene of Flavonoids Biosynthesis Positively Regulates Plants Abiotic Stress Tolerance. Wang H, Liu S, Fan F, Yu Q, Zhang P. Front Plant Sci; 2022 Feb 19; 13():850062. PubMed ID: 35968129 [Abstract] [Full Text] [Related]
15. PgUGT95B2 preferentially metabolizes flavones/flavonols and has evolved independently from flavone/flavonol UGTs identified in Arabidopsis thaliana. Wilson AE, Wu S, Tian L. Phytochemistry; 2019 Jan 19; 157():184-193. PubMed ID: 30419412 [Abstract] [Full Text] [Related]
16. Characterization of the 2ODD genes of DOXC subfamily and its members involved in flavonoids biosynthesis in Scutellaria baicalensis. Zhu S, Cui M, Zhao Q. BMC Plant Biol; 2024 Aug 26; 24(1):804. PubMed ID: 39183318 [Abstract] [Full Text] [Related]
17. Insight into the role of anthocyanin biosynthesis-related genes in Medicago truncatula mutants impaired in pigmentation in leaves. Carletti G, Lucini L, Busconi M, Marocco A, Bernardi J. Plant Physiol Biochem; 2013 Sep 26; 70():123-32. PubMed ID: 23774374 [Abstract] [Full Text] [Related]
18. Flavanone 3-hydroxylase transcripts and flavonol accumulation are temporally coordinate in maize anthers. Deboo GB, Albertsen MC, Taylor LP. Plant J; 1995 May 26; 7(5):703-13. PubMed ID: 7773305 [Abstract] [Full Text] [Related]
19. The gene encoding flavanone 3-hydroxylase is expressed normally in the pale yellow flowers of the Japanese morning glory carrying the speckled mutation which produce neither flavonol nor anthocyanin but accumulate chalcone, aurone and flavanone. Hoshino A, Abe Y, Saito N, Inagaki Y, Iida S. Plant Cell Physiol; 1997 Aug 26; 38(8):970-4. PubMed ID: 9327594 [Abstract] [Full Text] [Related]
20. Flavanone 3beta-hydroxylases from rice: key enzymes for favonol and anthocyanin biosynthesis. Kim JH, Lee YJ, Kim BG, Lim Y, Ahn JH. Mol Cells; 2008 Apr 30; 25(2):312-6. PubMed ID: 18413994 [Abstract] [Full Text] [Related] Page: [Next] [New Search]