These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


229 related items for PubMed ID: 33027029

  • 1. Inference-Based Posteriori Parameter Distribution Optimization.
    Wang X, Li T, Cheng Y, Chen CLP.
    IEEE Trans Cybern; 2022 May; 52(5):3006-3017. PubMed ID: 33027029
    [Abstract] [Full Text] [Related]

  • 2. Implicit Posteriori Parameter Distribution Optimization in Reinforcement Learning.
    Li T, Yang G, Chu J.
    IEEE Trans Cybern; 2024 May; 54(5):3051-3064. PubMed ID: 37030741
    [Abstract] [Full Text] [Related]

  • 3. Deep Reinforcement Learning on Autonomous Driving Policy With Auxiliary Critic Network.
    Wu Y, Liao S, Liu X, Li Z, Lu R.
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3680-3690. PubMed ID: 34669579
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. A deep reinforcement learning algorithm framework for solving multi-objective traveling salesman problem based on feature transformation.
    Zhao S, Gu S.
    Neural Netw; 2024 Aug; 176():106359. PubMed ID: 38733797
    [Abstract] [Full Text] [Related]

  • 9. Predictive hierarchical reinforcement learning for path-efficient mapless navigation with moving target.
    Li H, Luo B, Song W, Yang C.
    Neural Netw; 2023 Aug; 165():677-688. PubMed ID: 37385022
    [Abstract] [Full Text] [Related]

  • 10. Optimistic reinforcement learning by forward Kullback-Leibler divergence optimization.
    Kobayashi T.
    Neural Netw; 2022 Aug; 152():169-180. PubMed ID: 35533503
    [Abstract] [Full Text] [Related]

  • 11. Deep Reinforcement Learning for Resource Management on Network Slicing: A Survey.
    Hurtado Sánchez JA, Casilimas K, Caicedo Rendon OM.
    Sensors (Basel); 2022 Apr 15; 22(8):. PubMed ID: 35459015
    [Abstract] [Full Text] [Related]

  • 12. Human-in-the-Loop Reinforcement Learning in Continuous-Action Space.
    Luo B, Wu Z, Zhou F, Wang BC.
    IEEE Trans Neural Netw Learn Syst; 2024 Nov 15; 35(11):15735-15744. PubMed ID: 37418406
    [Abstract] [Full Text] [Related]

  • 13. Continuous Action Reinforcement Learning From a Mixture of Interpretable Experts.
    Akrour R, Tateo D, Peters J.
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct 15; 44(10):6795-6806. PubMed ID: 34375280
    [Abstract] [Full Text] [Related]

  • 14. An off-policy multi-agent stochastic policy gradient algorithm for cooperative continuous control.
    Guo D, Tang L, Zhang X, Liang YC.
    Neural Netw; 2024 Feb 15; 170():610-621. PubMed ID: 38056408
    [Abstract] [Full Text] [Related]

  • 15. Asynchronous Episodic Deep Deterministic Policy Gradient: Toward Continuous Control in Computationally Complex Environments.
    Zhang Z, Chen J, Chen Z, Li W.
    IEEE Trans Cybern; 2021 Feb 15; 51(2):604-613. PubMed ID: 31902788
    [Abstract] [Full Text] [Related]

  • 16. An Off-Policy Trust Region Policy Optimization Method With Monotonic Improvement Guarantee for Deep Reinforcement Learning.
    Meng W, Zheng Q, Shi Y, Pan G.
    IEEE Trans Neural Netw Learn Syst; 2022 May 15; 33(5):2223-2235. PubMed ID: 33481718
    [Abstract] [Full Text] [Related]

  • 17. A Routing Optimization Method for Software-Defined Optical Transport Networks Based on Ensembles and Reinforcement Learning.
    Chen J, Xiao W, Li X, Zheng Y, Huang X, Huang D, Wang M.
    Sensors (Basel); 2022 Oct 24; 22(21):. PubMed ID: 36365836
    [Abstract] [Full Text] [Related]

  • 18. Combining STDP and binary networks for reinforcement learning from images and sparse rewards.
    Chevtchenko SF, Ludermir TB.
    Neural Netw; 2021 Dec 24; 144():496-506. PubMed ID: 34601362
    [Abstract] [Full Text] [Related]

  • 19. Continuous action deep reinforcement learning for propofol dosing during general anesthesia.
    Schamberg G, Badgeley M, Meschede-Krasa B, Kwon O, Brown EN.
    Artif Intell Med; 2022 Jan 24; 123():102227. PubMed ID: 34998516
    [Abstract] [Full Text] [Related]

  • 20. Multi-Agent Reinforcement Learning via Adaptive Kalman Temporal Difference and Successor Representation.
    Salimibeni M, Mohammadi A, Malekzadeh P, Plataniotis KN.
    Sensors (Basel); 2022 Feb 11; 22(4):. PubMed ID: 35214293
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.