These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
283 related items for PubMed ID: 33028354
1. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke. Lambelet C, Temiraliuly D, Siegenthaler M, Wirth M, Woolley DG, Lambercy O, Gassert R, Wenderoth N. J Neuroeng Rehabil; 2020 Oct 07; 17(1):132. PubMed ID: 33028354 [Abstract] [Full Text] [Related]
2. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair. Meng Q, Xie Q, Shao H, Cao W, Wang F, Wang L, Yu H, Li S. Biomed Res Int; 2019 Oct 07; 2019():9627438. PubMed ID: 31976331 [Abstract] [Full Text] [Related]
3. Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation. Pezent E, Rose CG, Deshpande AD, O'Malley MK. IEEE Int Conf Rehabil Robot; 2017 Jul 07; 2017():720-725. PubMed ID: 28813905 [Abstract] [Full Text] [Related]
4. A Novel Bilateral Underactuated Upper Limb Exoskeleton for Post-Stroke Bimanual ADL Training. Kwok TM, Yu H. IEEE Trans Neural Syst Rehabil Eng; 2024 Jul 07; 32():3299-3309. PubMed ID: 38814776 [Abstract] [Full Text] [Related]
5. Hand Extension Robot Orthosis (HERO) Grip Glove: enabling independence amongst persons with severe hand impairments after stroke. Yurkewich A, Kozak IJ, Hebert D, Wang RH, Mihailidis A. J Neuroeng Rehabil; 2020 Feb 26; 17(1):33. PubMed ID: 32102668 [Abstract] [Full Text] [Related]
6. Evidence of neuroplasticity with robotic hand exoskeleton for post-stroke rehabilitation: a randomized controlled trial. Singh N, Saini M, Kumar N, Srivastava MVP, Mehndiratta A. J Neuroeng Rehabil; 2021 May 06; 18(1):76. PubMed ID: 33957937 [Abstract] [Full Text] [Related]
7. Design of a self-aligning 3-DOF actuated exoskeleton for diagnosis and training of wrist and forearm after stroke. Beekhuis JH, Westerveld AJ, van der Kooij H, Stienen AH. IEEE Int Conf Rehabil Robot; 2013 Jun 06; 2013():6650357. PubMed ID: 24187176 [Abstract] [Full Text] [Related]
8. The eWrist - A wearable wrist exoskeleton with sEMG-based force control for stroke rehabilitation. Lambelet C, Lyu M, Woolley D, Gassert R, Wenderoth N. IEEE Int Conf Rehabil Robot; 2017 Jul 06; 2017():726-733. PubMed ID: 28813906 [Abstract] [Full Text] [Related]
9. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation. Liu Y, Guo S, Hirata H, Ishihara H, Tamiya T. Biomed Microdevices; 2018 Aug 03; 20(3):64. PubMed ID: 30074095 [Abstract] [Full Text] [Related]
10. Reliability, validity and discriminant ability of a robotic device for finger training in patients with subacute stroke. Germanotta M, Gower V, Papadopoulou D, Cruciani A, Pecchioli C, Mosca R, Speranza G, Falsini C, Cecchi F, Vannetti F, Montesano A, Galeri S, Gramatica F, Aprile I, FDG Robotic Rehabilitation Group. J Neuroeng Rehabil; 2020 Jan 03; 17(1):1. PubMed ID: 31900169 [Abstract] [Full Text] [Related]
11. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT. Rodgers H, Bosomworth H, Krebs HI, van Wijck F, Howel D, Wilson N, Finch T, Alvarado N, Ternent L, Fernandez-Garcia C, Aird L, Andole S, Cohen DL, Dawson J, Ford GA, Francis R, Hogg S, Hughes N, Price CI, Turner DL, Vale L, Wilkes S, Shaw L. Health Technol Assess; 2020 Oct 03; 24(54):1-232. PubMed ID: 33140719 [Abstract] [Full Text] [Related]
12. A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation. Haghshenas-Jaryani M, Patterson RM, Bugnariu N, Wijesundara MBJ. J Hand Ther; 2020 Oct 03; 33(2):198-208. PubMed ID: 32423846 [Abstract] [Full Text] [Related]
13. Effects of a robot-aided somatosensory training on proprioception and motor function in stroke survivors. Yeh IL, Holst-Wolf J, Elangovan N, Cuppone AV, Lakshminarayan K, Cappello L, Masia L, Konczak J. J Neuroeng Rehabil; 2021 May 10; 18(1):77. PubMed ID: 33971912 [Abstract] [Full Text] [Related]
14. Pilot testing of the spring operated wearable enhancer for arm rehabilitation (SpringWear). Chen J, Lum PS. J Neuroeng Rehabil; 2018 Mar 02; 15(1):13. PubMed ID: 29499712 [Abstract] [Full Text] [Related]
15. Tongue-controlled robotic rehabilitation: A feasibility study in people with stroke. Ostadabbas S, Housley SN, Sebkhi N, Richards K, Wu D, Zhang Z, Rodriguez MG, Warthen L, Yarbrough C, Belagaje S, Butler AJ, Ghovanloo M. J Rehabil Res Dev; 2016 Mar 02; 53(6):989-1006. PubMed ID: 28475207 [Abstract] [Full Text] [Related]
16. Myoelectrically controlled wrist robot for stroke rehabilitation. Song R, Tong KY, Hu X, Zhou W. J Neuroeng Rehabil; 2013 Jun 10; 10():52. PubMed ID: 23758925 [Abstract] [Full Text] [Related]
17. Design of a 3D Printed Soft Robotic Hand for Stroke Rehabilitation and Daily Activities Assistance. Heung KHL, Tang ZQ, Ho L, Tung M, Li Z, Tong RKY. IEEE Int Conf Rehabil Robot; 2019 Jun 10; 2019():65-70. PubMed ID: 31374608 [Abstract] [Full Text] [Related]
18. Effects of a Soft Robotic Hand for Hand Rehabilitation in Chronic Stroke Survivors. Shi XQ, Heung HL, Tang ZQ, Li Z, Tong KY. J Stroke Cerebrovasc Dis; 2021 Jul 10; 30(7):105812. PubMed ID: 33895427 [Abstract] [Full Text] [Related]
19. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, Contreras-Vidal JL. J Neuroeng Rehabil; 2015 Jun 17; 12():54. PubMed ID: 26076696 [Abstract] [Full Text] [Related]
20. Enhancing stroke rehabilitation with whole-hand haptic rendering: development and clinical usability evaluation of a novel upper-limb rehabilitation device. Rätz R, Conti F, Thaler I, Müri RM, Marchal-Crespo L. J Neuroeng Rehabil; 2024 Sep 27; 21(1):172. PubMed ID: 39334423 [Abstract] [Full Text] [Related] Page: [Next] [New Search]