These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 33029634

  • 1. A slice classification model-facilitated 3D encoder-decoder network for segmenting organs at risk in head and neck cancer.
    Zhang S, Wang H, Tian S, Zhang X, Li J, Lei R, Gao M, Liu C, Yang L, Bi X, Zhu L, Zhu S, Xu T, Yang R.
    J Radiat Res; 2021 Jan 01; 62(1):94-103. PubMed ID: 33029634
    [Abstract] [Full Text] [Related]

  • 2. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W, Huang Y, Zeng L, Chen X, Liu Y, Qian Z, Du N, Fan W, Xie X.
    Med Phys; 2019 Feb 01; 46(2):576-589. PubMed ID: 30480818
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.
    Ibragimov B, Xing L.
    Med Phys; 2017 Feb 01; 44(2):547-557. PubMed ID: 28205307
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. AAR-RT - A system for auto-contouring organs at risk on CT images for radiation therapy planning: Principles, design, and large-scale evaluation on head-and-neck and thoracic cancer cases.
    Wu X, Udupa JK, Tong Y, Odhner D, Pednekar GV, Simone CB, McLaughlin D, Apinorasethkul C, Apinorasethkul O, Lukens J, Mihailidis D, Shammo G, James P, Tiwari A, Wojtowicz L, Camaratta J, Torigian DA.
    Med Image Anal; 2019 May 01; 54():45-62. PubMed ID: 30831357
    [Abstract] [Full Text] [Related]

  • 9. Weaving attention U-net: A novel hybrid CNN and attention-based method for organs-at-risk segmentation in head and neck CT images.
    Zhang Z, Zhao T, Gay H, Zhang W, Sun B.
    Med Phys; 2021 Nov 01; 48(11):7052-7062. PubMed ID: 34655077
    [Abstract] [Full Text] [Related]

  • 10. Improved accuracy of auto-segmentation of organs at risk in radiotherapy planning for nasopharyngeal carcinoma based on fully convolutional neural network deep learning.
    Peng Y, Liu Y, Shen G, Chen Z, Chen M, Miao J, Zhao C, Deng J, Qi Z, Deng X.
    Oral Oncol; 2023 Jan 01; 136():106261. PubMed ID: 36446186
    [Abstract] [Full Text] [Related]

  • 11. Validation of clinical acceptability of an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer.
    Hoang Duc AK, Eminowicz G, Mendes R, Wong SL, McClelland J, Modat M, Cardoso MJ, Mendelson AF, Veiga C, Kadir T, D'Souza D, Ourselin S.
    Med Phys; 2015 Sep 01; 42(9):5027-34. PubMed ID: 26328953
    [Abstract] [Full Text] [Related]

  • 12. Head and neck multi-organ auto-segmentation on CT images aided by synthetic MRI.
    Liu Y, Lei Y, Fu Y, Wang T, Zhou J, Jiang X, McDonald M, Beitler JJ, Curran WJ, Liu T, Yang X.
    Med Phys; 2020 Sep 01; 47(9):4294-4302. PubMed ID: 32648602
    [Abstract] [Full Text] [Related]

  • 13. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images.
    Feng X, Qing K, Tustison NJ, Meyer CH, Chen Q.
    Med Phys; 2019 May 01; 46(5):2169-2180. PubMed ID: 30830685
    [Abstract] [Full Text] [Related]

  • 14. 3D Lightweight Network for Simultaneous Registration and Segmentation of Organs-at-Risk in CT Images of Head and Neck Cancer.
    Huang B, Ye Y, Xu Z, Cai Z, He Y, Zhong Z, Liu L, Chen X, Chen H, Huang B.
    IEEE Trans Med Imaging; 2022 Apr 01; 41(4):951-964. PubMed ID: 34784272
    [Abstract] [Full Text] [Related]

  • 15. Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center.
    D'Aviero A, Re A, Catucci F, Piccari D, Votta C, Piro D, Piras A, Di Dio C, Iezzi M, Preziosi F, Menna S, Quaranta F, Boschetti A, Marras M, Miccichè F, Gallus R, Indovina L, Bussu F, Valentini V, Cusumano D, Mattiucci GC.
    Int J Environ Res Public Health; 2022 Jul 25; 19(15):. PubMed ID: 35897425
    [Abstract] [Full Text] [Related]

  • 16. Self-channel-and-spatial-attention neural network for automated multi-organ segmentation on head and neck CT images.
    Gou S, Tong N, Qi S, Yang S, Chin R, Sheng K.
    Phys Med Biol; 2020 Dec 11; 65(24):245034. PubMed ID: 32097892
    [Abstract] [Full Text] [Related]

  • 17. Automatic segmentation of organs-at-risks of nasopharynx cancer and lung cancer by cross-layer attention fusion network with TELD-Loss.
    Liu Z, Sun C, Wang H, Li Z, Gao Y, Lei W, Zhang S, Wang G, Zhang S.
    Med Phys; 2021 Nov 11; 48(11):6987-7002. PubMed ID: 34608652
    [Abstract] [Full Text] [Related]

  • 18. Interleaved 3D-CNNs for joint segmentation of small-volume structures in head and neck CT images.
    Ren X, Xiang L, Nie D, Shao Y, Zhang H, Shen D, Wang Q.
    Med Phys; 2018 May 11; 45(5):2063-2075. PubMed ID: 29480928
    [Abstract] [Full Text] [Related]

  • 19. Multi-organ auto-delineation in head-and-neck MRI for radiation therapy using regional convolutional neural network.
    Dai X, Lei Y, Wang T, Zhou J, Rudra S, McDonald M, Curran WJ, Liu T, Yang X.
    Phys Med Biol; 2022 Jan 21; 67(2):. PubMed ID: 34794138
    [Abstract] [Full Text] [Related]

  • 20. Multi-organ segmentation of organ-at-risk (OAR's) of head and neck site using ensemble learning technique.
    Singh S, Singh BK, Kumar A.
    Radiography (Lond); 2024 Mar 21; 30(2):673-680. PubMed ID: 38364707
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.