These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


181 related items for PubMed ID: 33034111

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. MEMO1 drives cranial endochondral ossification and palatogenesis.
    Van Otterloo E, Feng W, Jones KL, Hynes NE, Clouthier DE, Niswander L, Williams T.
    Dev Biol; 2016 Jul 15; 415(2):278-295. PubMed ID: 26746790
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Indirect modulation of Shh signaling by Dlx5 affects the oral-nasal patterning of palate and rescues cleft palate in Msx1-null mice.
    Han J, Mayo J, Xu X, Li J, Bringas P, Maas RL, Rubenstein JL, Chai Y.
    Development; 2009 Dec 15; 136(24):4225-33. PubMed ID: 19934017
    [Abstract] [Full Text] [Related]

  • 26. Genome-wide Identification of Foxf2 Target Genes in Palate Development.
    Xu J, Liu H, Lan Y, Park JS, Jiang R.
    J Dent Res; 2020 Apr 15; 99(4):463-471. PubMed ID: 32040930
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. The role of the histone methyltransferase SET domain bifurcated 1 during palatal development.
    Kano S, Higashihori N, Thiha P, Takechi M, Iseki S, Moriyama K.
    Biochem Biophys Res Commun; 2022 Apr 02; 598():74-80. PubMed ID: 35151207
    [Abstract] [Full Text] [Related]

  • 29. Deficient cell proliferation in palatal shelf mesenchyme of CL/Fr mouse embryos.
    Sasaki Y, Tanaka S, Hamachi T, Taya Y.
    J Dent Res; 2004 Oct 02; 83(10):797-801. PubMed ID: 15381722
    [Abstract] [Full Text] [Related]

  • 30. Transforming Growth Factor-Beta and Sonic Hedgehog Signaling in Palatal Epithelium Regulate Tenascin-C Expression in Palatal Mesenchyme During Soft Palate Development.
    Ohki S, Oka K, Ogata K, Okuhara S, Rikitake M, Toda-Nakamura M, Tamura S, Ozaki M, Iseki S, Sakai T.
    Front Physiol; 2020 Oct 02; 11():532. PubMed ID: 32581832
    [Abstract] [Full Text] [Related]

  • 31. Multiple functions of Snail family genes during palate development in mice.
    Murray SA, Oram KF, Gridley T.
    Development; 2007 May 02; 134(9):1789-97. PubMed ID: 17376812
    [Abstract] [Full Text] [Related]

  • 32. Rescue of cleft palate in Msx1-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis.
    Zhang Z, Song Y, Zhao X, Zhang X, Fermin C, Chen Y.
    Development; 2002 Sep 02; 129(17):4135-46. PubMed ID: 12163415
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Sox9CreER-mediated deletion of β-catenin in palatal mesenchyme results in delayed palatal elevation accompanied with repressed canonical Wnt signaling and reduced actin polymerization.
    Pang X, Wang X, Wang Y, Pu L, Shi J, Burdekin N, Shi B, Li C.
    Genesis; 2021 Sep 02; 59(9):e23441. PubMed ID: 34390177
    [Abstract] [Full Text] [Related]

  • 35. Deletion of the T-box transcription factor gene, Tbx1, in mice induces differential expression of genes associated with cleft palate in humans.
    Funato N, Yanagisawa H.
    Arch Oral Biol; 2018 Nov 02; 95():149-155. PubMed ID: 30121012
    [Abstract] [Full Text] [Related]

  • 36. Temporal and spatial expression of Hoxa-2 during murine palatogenesis.
    Nazarali A, Puthucode R, Leung V, Wolf L, Hao Z, Yeung J.
    Cell Mol Neurobiol; 2000 Jun 02; 20(3):269-90. PubMed ID: 10789828
    [Abstract] [Full Text] [Related]

  • 37. RERE deficiency contributes to the development of orofacial clefts in humans and mice.
    Kim BJ, Zaveri HP, Kundert PN, Jordan VK, Scott TM, Carmichael J, Scott DA.
    Hum Mol Genet; 2021 May 12; 30(7):595-602. PubMed ID: 33772547
    [Abstract] [Full Text] [Related]

  • 38. Pathogenesis of cleft palate in TGF-beta3 knockout mice.
    Taya Y, O'Kane S, Ferguson MW.
    Development; 1999 Sep 12; 126(17):3869-79. PubMed ID: 10433915
    [Abstract] [Full Text] [Related]

  • 39. Pbx loss in cranial neural crest, unlike in epithelium, results in cleft palate only and a broader midface.
    Welsh IC, Hart J, Brown JM, Hansen K, Rocha Marques M, Aho RJ, Grishina I, Hurtado R, Herzlinger D, Ferretti E, Garcia-Garcia MJ, Selleri L.
    J Anat; 2018 Aug 12; 233(2):222-242. PubMed ID: 29797482
    [Abstract] [Full Text] [Related]

  • 40. Cleft Palate Induced by Augmented Fibroblast Growth Factor-9 Signaling in Cranial Neural Crest Cells in Mice.
    Lin C, Liu S, Ruan N, Chen J, Chen Y, Zhang Y, Zhang J.
    Stem Cells Dev; 2024 Oct 12; 33(19-20):562-573. PubMed ID: 39119818
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.