These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1146 related items for PubMed ID: 33043610
1. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Kumar H, Sakthivel K, Mohamed MGA, Boras E, Shin SR, Kim K. Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610 [Abstract] [Full Text] [Related]
2. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting. Wang Z, Kumar H, Tian Z, Jin X, Holzman JF, Menard F, Kim K. ACS Appl Mater Interfaces; 2018 Aug 15; 10(32):26859-26869. PubMed ID: 30024722 [Abstract] [Full Text] [Related]
3. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair. Rajabi N, Rezaei A, Kharaziha M, Bakhsheshi-Rad HR, Luo H, RamaKrishna S, Berto F. Tissue Eng Part A; 2021 Jun 15; 27(11-12):679-702. PubMed ID: 33499750 [Abstract] [Full Text] [Related]
4. Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent. Mahdavi SS, Abdekhodaie MJ, Kumar H, Mashayekhan S, Baradaran-Rafii A, Kim K. Ann Biomed Eng; 2020 Jul 15; 48(7):1955-1970. PubMed ID: 32504140 [Abstract] [Full Text] [Related]
5. Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting. Hossain Rakin R, Kumar H, Rajeev A, Natale G, Menard F, Li ITS, Kim K. Biofabrication; 2021 Sep 27; 13(4):. PubMed ID: 34507314 [Abstract] [Full Text] [Related]
6. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J, Yan M, Wang Y, Fu J, Suo H. ACS Appl Mater Interfaces; 2018 Feb 28; 10(8):6849-6857. PubMed ID: 29405059 [Abstract] [Full Text] [Related]
7. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M, Liu J, Kamkar M, Azarmanesh M, Sundararaj U, Nezhad AS. Biomed Mater; 2020 Dec 16; 16(1):015021. PubMed ID: 33325382 [Abstract] [Full Text] [Related]
8. Sonochemical Degradation of Gelatin Methacryloyl to Control Viscoelasticity for Inkjet Bioprinting. Lee Y, Park JA, Tuladhar T, Jung S. Macromol Biosci; 2023 May 16; 23(5):e2200509. PubMed ID: 36896820 [Abstract] [Full Text] [Related]
9. Effect of viscosity of gelatin methacryloyl-based bioinks on bone cells. Rashad A, Gomez A, Gangrade A, Zehtabi F, Mandal K, Maity S, Ma C, Li B, Khademhosseini A, de Barros NR. Biofabrication; 2024 Sep 03; 16(4):. PubMed ID: 39121892 [Abstract] [Full Text] [Related]
10. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. Xie M, Yu K, Sun Y, Shao L, Nie J, Gao Q, Qiu J, Fu J, Chen Z, He Y. J Vis Exp; 2019 Dec 21; (154):. PubMed ID: 31904016 [Abstract] [Full Text] [Related]
11. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y, Zhang L, Du X, Fan Z, Wang L, Sun W, Cheng Y, Zhu Y, Chen C. J Biomater Appl; 2018 Nov 21; 33(5):609-618. PubMed ID: 30360677 [Abstract] [Full Text] [Related]
12. Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks. Liu W, Heinrich MA, Zhou Y, Akpek A, Hu N, Liu X, Guan X, Zhong Z, Jin X, Khademhosseini A, Zhang YS. Adv Healthc Mater; 2017 Jun 21; 6(12):. PubMed ID: 28464555 [Abstract] [Full Text] [Related]
13. Micropore-Forming Gelatin Methacryloyl (GelMA) Bioink Toolbox 2.0: Designable Tunability and Adaptability for 3D Bioprinting Applications. Yi S, Liu Q, Luo Z, He JJ, Ma HL, Li W, Wang D, Zhou C, Garciamendez CE, Hou L, Zhang J, Zhang YS. Small; 2022 Jun 21; 18(25):e2106357. PubMed ID: 35607752 [Abstract] [Full Text] [Related]
14. A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing. Anand R, Salar Amoli M, Huysecom AS, Amorim PA, Agten H, Geris L, Bloemen V. Biomed Mater; 2022 Jun 24; 17(4):. PubMed ID: 35700719 [Abstract] [Full Text] [Related]
16. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Cidonio G, Alcala-Orozco CR, Lim KS, Glinka M, Mutreja I, Kim YH, Dawson JI, Woodfield TBF, Oreffo ROC. Biofabrication; 2019 Jun 12; 11(3):035027. PubMed ID: 30991370 [Abstract] [Full Text] [Related]
17. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink. Liu Q, Yang J, Wang Y, Wu T, Liang Y, Deng K, Luan G, Chen Y, Huang Z, Yue K. Biomacromolecules; 2023 Jun 12; 24(6):2549-2562. PubMed ID: 37115848 [Abstract] [Full Text] [Related]
18. Printing GelMA bioinks: a strategy for buildingin vitromodel to study nanoparticle-based minocycline release and cellular protection under oxidative stress. Fu Z, Hai N, Zhong Y, Sun W. Biofabrication; 2024 Mar 28; 16(2):. PubMed ID: 38447206 [Abstract] [Full Text] [Related]