These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


120 related items for PubMed ID: 33044336

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT, Jenkins HA, Tollin DJ, Easter JR.
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [Abstract] [Full Text] [Related]

  • 3. Sound pressures in the basal turn of the cat cochlea.
    Nedzelnitsky V.
    J Acoust Soc Am; 1980 Dec; 68(6):1676-89. PubMed ID: 7462467
    [Abstract] [Full Text] [Related]

  • 4. Differential intracochlear sound pressure measurements in normal human temporal bones.
    Nakajima HH, Dong W, Olson ES, Merchant SN, Ravicz ME, Rosowski JJ.
    J Assoc Res Otolaryngol; 2009 Mar; 10(1):23-36. PubMed ID: 19067078
    [Abstract] [Full Text] [Related]

  • 5. Superior Canal Dehiscence Similarly Affects Cochlear Pressures in Temporal Bones and Audiograms in Patients.
    Cheng YS, Raufer S, Guan X, Halpin CF, Lee DJ, Nakajima HH.
    Ear Hear; 2020 Mar; 41(4):804-810. PubMed ID: 31688316
    [Abstract] [Full Text] [Related]

  • 6. Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea.
    Stieger C, Rosowski JJ, Nakajima HH.
    Hear Res; 2013 Jul; 301():105-14. PubMed ID: 23159918
    [Abstract] [Full Text] [Related]

  • 7. Third-window vibroplasty with an active middle ear implant: assessment of physiologic responses in a model of stapes fixation in Chinchilla lanigera.
    Lupo JE, Koka K, Jenkins HA, Tollin DJ.
    Otol Neurotol; 2012 Apr; 33(3):425-31. PubMed ID: 22334156
    [Abstract] [Full Text] [Related]

  • 8. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H, Salcher R, Schwab B, Lenarz T.
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [Abstract] [Full Text] [Related]

  • 9. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
    Péus D, Dobrev I, Prochazka L, Thoele K, Dalbert A, Boss A, Newcomb N, Probst R, Röösli C, Sim JH, Huber A, Pfiffner F.
    Hear Res; 2017 Aug; 351():88-97. PubMed ID: 28601531
    [Abstract] [Full Text] [Related]

  • 10. Intracochlear sound pressure measurements in guinea pigs.
    Dancer A, Franke R.
    Hear Res; 1980 Jun; 2(3-4):191-205. PubMed ID: 7410227
    [Abstract] [Full Text] [Related]

  • 11. Real-time measurement of stapes motion and intracochlear pressure during blast exposure.
    Bien AG, Jiang S, Gan RZ.
    Hear Res; 2023 Mar 01; 429():108702. PubMed ID: 36669259
    [Abstract] [Full Text] [Related]

  • 12. Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones.
    Frear DL, Guan X, Stieger C, Rosowski JJ, Nakajima HH.
    Hear Res; 2018 Sep 01; 367():17-31. PubMed ID: 30015103
    [Abstract] [Full Text] [Related]

  • 13. Intracochlear pressure measurements during acoustic shock wave exposure.
    Greene NT, Alhussaini MA, Easter JR, Argo TF, Walilko T, Tollin DJ.
    Hear Res; 2018 Aug 01; 365():149-164. PubMed ID: 29843947
    [Abstract] [Full Text] [Related]

  • 14. Cochlear Implant Electrode Effect on Sound Energy Transfer Within the Cochlea During Acoustic Stimulation.
    Greene NT, Mattingly JK, Jenkins HA, Tollin DJ, Easter JR, Cass SP.
    Otol Neurotol; 2015 Sep 01; 36(9):1554-61. PubMed ID: 26333018
    [Abstract] [Full Text] [Related]

  • 15. Drill-induced Cochlear Injury During Otologic Surgery: Intracochlear Pressure Evidence of Acoustic Trauma.
    Banakis Hartl RM, Mattingly JK, Greene NT, Farrell NF, Gubbels SP, Tollin DJ.
    Otol Neurotol; 2017 Aug 01; 38(7):938-947. PubMed ID: 28598950
    [Abstract] [Full Text] [Related]

  • 16. Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones During Bone Conduction Stimulation.
    Stieger C, Guan X, Farahmand RB, Page BF, Merchant JP, Abur D, Nakajima HH.
    J Assoc Res Otolaryngol; 2018 Oct 01; 19(5):523-539. PubMed ID: 30171386
    [Abstract] [Full Text] [Related]

  • 17. The impact of round window reinforcement on middle and inner ear mechanics with air and bone conduction stimulation.
    Geerardyn A, Wils I, Putzeys T, Fierens G, Wouters J, Verhaert N.
    Hear Res; 2024 Sep 01; 450():109049. PubMed ID: 38850830
    [Abstract] [Full Text] [Related]

  • 18. Risks of Intracochlear Pressures From Laser Stapedotomy.
    Misch ES, Banakis Hartl RM, Gubbels SP, Greene NT.
    Otol Neurotol; 2020 Mar 01; 41(3):308-317. PubMed ID: 31746814
    [Abstract] [Full Text] [Related]

  • 19. Animal model of cochlear third window in the scala vestibuli or scala tympani.
    Attias J, Preis M, Shemesh R, Hadar T, Nageris BI.
    Otol Neurotol; 2010 Aug 01; 31(6):985-90. PubMed ID: 20517168
    [Abstract] [Full Text] [Related]

  • 20. Intracochlear Pressures in Simulated Otitis Media With Effusion: A Temporal Bone Study.
    Alhussaini MA, Banakis Hartl RM, Benichoux V, Tollin DJ, Jenkins HA, Greene NT.
    Otol Neurotol; 2018 Aug 01; 39(7):e585-e592. PubMed ID: 29912830
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.