These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


154 related items for PubMed ID: 33049863

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Agrowaste-based nanofibers as a probiotic encapsulant: fabrication and characterization.
    Fung WY, Yuen KH, Liong MT.
    J Agric Food Chem; 2011 Aug 10; 59(15):8140-7. PubMed ID: 21711050
    [Abstract] [Full Text] [Related]

  • 3. Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to enhance recycled paper quality.
    Campano C, Merayo N, Negro C, Blanco Á.
    Int J Biol Macromol; 2018 Jul 15; 114():1077-1083. PubMed ID: 29605254
    [Abstract] [Full Text] [Related]

  • 4. Immobilization of lysozyme on bacterial cellulose nanofibers: Characteristics, antimicrobial activity and morphological properties.
    Bayazidi P, Almasi H, Asl AK.
    Int J Biol Macromol; 2018 Feb 15; 107(Pt B):2544-2551. PubMed ID: 29079438
    [Abstract] [Full Text] [Related]

  • 5. Evaluation of agrowastes as immobilizers for probiotics in soy milk.
    Teh SS, Ahmad R, Wan-Abdullah WN, Liong MT.
    J Agric Food Chem; 2009 Nov 11; 57(21):10187-98. PubMed ID: 19821558
    [Abstract] [Full Text] [Related]

  • 6. Improved Viability and Thermal Stability of the Probiotics Encapsulated in a Novel Electrospun Fiber Mat.
    Feng K, Zhai MY, Zhang Y, Linhardt RJ, Zong MH, Li L, Wu H.
    J Agric Food Chem; 2018 Oct 17; 66(41):10890-10897. PubMed ID: 30260640
    [Abstract] [Full Text] [Related]

  • 7. Development of bacterial cellulose/chitin multi-nanofibers based smart films containing natural active microspheres and nanoparticles formed in situ.
    Yang YN, Lu KY, Wang P, Ho YC, Tsai ML, Mi FL.
    Carbohydr Polym; 2020 Jan 15; 228():115370. PubMed ID: 31635728
    [Abstract] [Full Text] [Related]

  • 8. Spray-dried bacterial cellulose nanofibers: A new generation of pharmaceutical excipient intended for intestinal drug delivery.
    Meneguin AB, da Silva Barud H, Sábio RM, de Sousa PZ, Manieri KF, de Freitas LAP, Pacheco G, Alonso JD, Chorilli M.
    Carbohydr Polym; 2020 Dec 01; 249():116838. PubMed ID: 32933682
    [Abstract] [Full Text] [Related]

  • 9. Fabrication of electrospun gum Arabic-polyvinyl alcohol blend nanofibers for improved viability of the probiotic.
    Fareed F, Saeed F, Afzaal M, Imran A, Ahmad A, Mahmood K, Shah YA, Hussain M, Ateeq H.
    J Food Sci Technol; 2022 Dec 01; 59(12):4812-4821. PubMed ID: 36276519
    [Abstract] [Full Text] [Related]

  • 10. Immobilization of vaginal Lactobacillus in polymeric nanofibers for its incorporation in vaginal probiotic products.
    Silva JA, De Gregorio PR, Rivero G, Abraham GA, Nader-Macías MEF.
    Eur J Pharm Sci; 2021 Jan 01; 156():105563. PubMed ID: 32976956
    [Abstract] [Full Text] [Related]

  • 11. Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: Characterization, antimicrobial and release properties.
    Almasi H, Jafarzadeh P, Mehryar L.
    Carbohydr Polym; 2018 Apr 15; 186():273-281. PubMed ID: 29455988
    [Abstract] [Full Text] [Related]

  • 12. Bacterial cellulose nanofibers as reinforce in edible fish myofibrillar protein nanocomposite films.
    Shabanpour B, Kazemi M, Ojagh SM, Pourashouri P.
    Int J Biol Macromol; 2018 Oct 01; 117():742-751. PubMed ID: 29777810
    [Abstract] [Full Text] [Related]

  • 13. Improved digestive stability of probiotics encapsulated within poly(vinyl alcohol)/cellulose acetate hybrid fibers.
    Çanga EM, Dudak FC.
    Carbohydr Polym; 2021 Jul 15; 264():117990. PubMed ID: 33910728
    [Abstract] [Full Text] [Related]

  • 14. Development of microparticulate systems for intestinal delivery of Lactobacillus acidophilus and Bifidobacterium lactis.
    Albertini B, Vitali B, Passerini N, Cruciani F, Di Sabatino M, Rodriguez L, Brigidi P.
    Eur J Pharm Sci; 2010 Jul 11; 40(4):359-66. PubMed ID: 20420903
    [Abstract] [Full Text] [Related]

  • 15. The Effect of Encapsulation on The Stability of Probiotic Bacteria in Ice Cream and Simulated Gastrointestinal Conditions.
    Afzaal M, Saeed F, Arshad MU, Nadeem MT, Saeed M, Tufail T.
    Probiotics Antimicrob Proteins; 2019 Dec 11; 11(4):1348-1354. PubMed ID: 30426464
    [Abstract] [Full Text] [Related]

  • 16. The Effect of Fe3O4 Nanoparticles on Survival of Probiotic Bacteria Lactobacillus acidophilus PCM2499 at Lower pH.
    Jurkowski A, Zapotoczny B, Kozioł JJ, Dudek MR.
    Pol J Microbiol; 2015 Dec 11; 64(3):307-10. PubMed ID: 26638541
    [Abstract] [Full Text] [Related]

  • 17. Preparation of starch-based green nanofiber mats for probiotic encapsulation by electrospinning.
    Wang Y, Lv H, Wang C, He D, Zhao H, Xu E, Jin Z, Wu Z, Liu P, Cui B.
    J Food Sci; 2024 Sep 11; 89(9):5659-5673. PubMed ID: 39086043
    [Abstract] [Full Text] [Related]

  • 18. Electrospun water-stable zein/ethyl cellulose composite nanofiber and its drug release properties.
    Lu H, Wang Q, Li G, Qiu Y, Wei Q.
    Mater Sci Eng C Mater Biol Appl; 2017 May 01; 74():86-93. PubMed ID: 28254337
    [Abstract] [Full Text] [Related]

  • 19. Development of soy protein isolate/sodium carboxymethyl cellulose synbiotic microgels by double crosslinking with transglutaminase and aluminum chloride for delivery system of Lactobacillus acidophilus.
    Moon EC, Kang YR, Chang YH.
    Int J Biol Macromol; 2023 May 15; 237():124122. PubMed ID: 36963536
    [Abstract] [Full Text] [Related]

  • 20. Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 cell surface hydrophobicity and survival of the cells under adverse environmental conditions.
    Shakirova L, Grube M, Gavare M, Auzina L, Zikmanis P.
    J Ind Microbiol Biotechnol; 2013 Jan 15; 40(1):85-93. PubMed ID: 23053348
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.